DeepSeek医疗应用要重视提示词工程

导读 提示词工程的核心是收窄输入问题域。

DeepSeek大语言模型在医疗行业的应用,正在成为提升医疗科研质量的重要手段。其在辅助诊断、医疗咨询到个性化治疗方案等多个领域,都展现出巨大的潜力。然而,医疗行业对信息的准确性、专业性和安全性要求极高,如何确保DeepSeek的输出结果精准可靠,是当前亟待解决的问题。提示词工程作为优化大语言模型输出的关键手段,正逐渐成为医疗AI应用的重要组成部分。

提示词工程的重要性

提示词工程的核心是收窄输入问题域,通过反复迭代,达到模型输出精确匹配使用需求的目的。在语言模型应用中,提示词工程能起到“四两拨千斤”的效果。

1.提升模型输出的准确性
在医疗领域,信息的准确性直接关系到患者的健康和安全。DeepSeek具备强大的语言生成能力,但其输出往往依赖于输入的提示词。通过精心设计的提示词模板,可以有效引导模型聚焦于关键信息,避免因模糊或不完整的输入而导致的错误输出。例如,在疾病诊断中,明确的提示词可以引导模型准确识别症状与疾病的关联,从而提高诊断的准确性。

2.优化模型的行业适配性
医疗行业有其独特的语言体系、专业术语和逻辑结构。通用的大语言模型在处理医疗问题时,可能因缺乏对行业背景的理解而出现偏差。行业提示词模板能够将医疗专业知识融入提示词中,帮助模型更好地理解和处理医疗问题,从而提升其在医疗领域的适配性。

3.提高医疗服务效率
精准的提示词可以减少模型生成无关信息的时间和精力,使其快速输出有价值的结果。例如,在诊前咨询中,通过优化提示词,大语言模型可以快速为患者提供初步诊断建议和就诊科室推荐,从而提高医疗服务效率。

医疗提示词的通用模板

1.患者咨询类
(1)症状咨询回复
模板:“用户提问:‘[症状描述]可能是什么疾病?’请用通俗语言列出3种可能性,并建议是否需要就医。”
适用场景:患者通过在线平台咨询症状时,快速生成初步诊断建议。
(2)药物咨询回复
模板:“患者担心[医疗状况]所开药物的副作用。写下3条回复,解决他们的担忧并提供安慰。每条回复不应超过150个字。”
适用场景:患者对药物使用有疑虑时,提供简洁的解答。

2.医疗文件类
以“病历摘要生成”为例:
模板:

请根据以下病历信息,生成一份病历摘要:
患者信息:<patient_info>
主诉:<chief_complaint>
现病史:<history_of_present_illness>
检查结果:<examination_results>
诊断:
治疗计划:<treatment_plan>
病历摘要:……

适用场景:快速生成标准化的病历摘要,方便医护查阅。

3.医学研究类
(1)研究文章总结
模板:“总结一篇关于[医疗状况]或其治疗的研究文章。给我3个例子。每个总结最多250个字。”
适用场景:快速提取研究文章的核心内容,用于学术交流或临床参考。
(2)临床试验概述
模板:“写一篇与[医疗状况]相关的临床试验的简要概述。提供3个示例,每个示例不超过200字。”
适用场景:为临床试验提供简洁介绍,便于同行了解研究设计和目标。

实现提示词工程的工具和社区

1.开源工具
PromptDev是开源的提示词开发工具,支持多领域提示词模板的设计与复用,包括医疗健康领域。它提供了详细的模板设计指南和示例,帮助用户快速生成高质量的提示词。

2.社区平台
NIUBOYI 是专注于ChatGPT提示词应用的社区平台,提供了医疗保健行业的优秀提示词样本,涵盖患者咨询、医疗文件撰写、医学研究、患者教育等多个场景。这些提示词模板可以在DeepSeek应用时参考使用,或根据具体需求进行调整。

结论

在医疗行业,DeepSeek应用前景广阔,但其输出精准性是实现广泛应用的关键。提示词工程通过优化输入提示词,能够有效提升模型的输出质量,使其更好地适配医疗行业的专业需求,医疗行业人员的技术转型是推动大语言模型应用和医疗行业数字化转型的必然选择。面对DeepSeek大模型,医疗信息工作者应努力做好大模型与医护管的“翻译官”,把用户需求变成大模型输入提示词,提升大模型输出的精准度。
以LLM为基座的医学应用提示词工程是AI时代新的软件工程。“大模型应用从提示词开始,人人都是场景提示词的模版创作者。”随着各种应用场景提示词模版的持续积累与改进,大语言模型有望在医疗领域发挥更大的作用。医学信息工作者应积极推动从“技术”向“服务”转型,以大模型应用新生态,迎接人工智能技术带来的机遇和挑战。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值