“ 向量是大模型的基石,嵌入是大模型的入口 ”
最近在研究RAG然后带来了对嵌入与向量的思考;毕竟嵌入与向量是实现大模型的基础;嵌入解决的是数据向量化的问题,而向量解决的是数据之间的关系问题。
Embedding中文翻译是嵌入,但更形象的理解是——在机器学习和大模型中,嵌入是一种数据向量化或向量表示的技术;简单来说就相当于一个转换器,把人类能够理解的数据包括文本,图像等转换为大模型方便处理的向量数据。
而向量是数学概念中的一个表示有大小和方向的量,其空间几何意义就是一个带有方向的箭头,并且可以平移;而更直观的理解可以把向量当成一个多维矩阵,更确切的说是用多维矩阵来描述向量。
因此,我们在大模型技术中所说的向量指的并不是空间维度;而是数据所构成的维度。所以说,向量是一个数学概念,而矩阵是向量在计算机中的载体。
嵌入与向量
向量
向量在数学上表示的一个有方向和大小的量,在计算机中的载体是一个多维矩阵;因此向量从某些方面讲就具备矩阵的性质,比如维度变换。
在大模型中数据一半通过多维矩阵来描述,比如大模型参数中有一个很重要的参数就是维度(dimension);这个维度指的就是多维矩阵的维度,维度越高,能够表示的场景就越复杂。
但同样,由于矩阵中存在着太多无用数据;因此就产生了密集矩阵和稀疏矩阵的区别;而稀疏矩阵可以通过降维的方式来压缩其矩阵大小,以此来获取更高的存储效率。
高维矩阵与低维矩阵的区别就类似于图片中的像素点;像素点越多,图片质量越好,观感上就更细腻;而像素点越低,图像就越模糊,丢失的东西就越多。
但同样的图片效果怎么样,除了像素点之外还有你观看距离的影响,离得越远,像素点的影响越小。
而为了解决近距离观看的效果,升维就有了用武之地;而远距离观看,就可以对数据进行降维处理,节省空间,提升效率。
而至于怎么描述数据之间的语义关系,就是通过向量之间的计算——比如欧式距离,余弦,内积等。
嵌入
嵌入虽然本质上都是把离散数据映射到高维矩阵中,通过向量的空间关系来捕捉数据之间的语义关系;但其在不同的场景中又有一定的区别。
词嵌入
词嵌入是将单词映射为数值向量,以捕捉单词间的语义和句法关系,为自然语言处理任务提供有效的特征表示。
方法与技术:词嵌入通过预测单词上下文(如Word2Vec)或全局词频统计(如GloVe)来学习,也可使用深度神经网络捕捉更复杂的语言特征。
图像嵌入
图像嵌入是将图像转换为低维向量,以简化处理并保留关键信息供机器学习使用。
方法与技术:利用深度学习模型(如CNN)抽取图像特征,通过降维技术映射到低维空间,训练优化嵌入向量。
在机器学习中,Embedding 主要是指将离散的高维数据(如文字、图片、音频)映射到低纬度的连续向量空间。这个过程会生成由实数构成的向量,用于捕捉原始数据的潜在的关系和结构。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。