今天给大家带来一篇腾讯最新开源的向量模型的论文,模型开源,在CMTEB上拿了第一名!嵌入/向量模型是Agent、RAG中很关键的一个组件,所以也是一个卷的很激烈的一个领域。
Conan-embedding: General Text Embedding with More and Better Negative Samples
随着RAG(检索增强生成)技术的日益普及,嵌入模型的能力正受到越来越多的关注。嵌入模型主要通过对比学习进行训练,其中负样本是一个关键组件。以往的研究提出了各种硬负样本挖掘策略,但这些策略通常被作为预处理步骤使用。在本文中,我们提出了conan-embedding模型,该模型最大化地利用更多、更高质量的负样本。具体来说,由于模型处理预处理负样本的能力在训练过程中不断发展,我们提出了一种动态硬负样本挖掘方法,以便在整个训练过程中使模型接触到更多具有挑战性的负样本。其次,对比学习需要尽可能多的负样本,但受限于GPU内存的限制。因此,我们使用了Cross-GPU平衡损失(Cross-GPU balancing Loss)来提供更多的负样本进行嵌入训练,并在多个任务之间平衡批量大小。此外,我们还发现LLM(大型语言模型)生成的提示-响应对可以用于嵌入训练。我们的方法有效地增强了嵌入模型的能力,目前在Chinese Massive Text Embedding Benchmark(CMTEB)排行榜上排名第一。
模型开源地址:https://huggingface.co/TencentBAC/Conan-embedding-v1
Conan-embedding模型,主要是提出了两个的新点子:Dynamic Hard Negative Mining和Cross-GPU Batch Balance Loss
-
Dynamic Hard Negative Mining: 就是在训练过程中动态地挖掘难负例,每100次迭代检查一次,如果负例的分数乘以1.15小于初始分数且绝对值小于0.8,就认为这个负例不再困难,并用新的难负例替换它。
-
Cross-GPU Batch Balance Loss, CBB Loss: 对比学习需要尽可能多的负样本,但受到GPU内存限制。利用多个GPU引入更多的负样本,在多个任务之间平衡负样本的数量,提高训练效率和效果。
论文里还提到了,用LLM生成的prompt-response对来训练嵌入模型,这样可以让模型更聪明,处理起文本来更得心应手。
Conan-embedding在CMTEB的六个任务上都取得了优异的成绩,超越了之前所有的模型。消融研究也证明了动态硬负样本挖掘和CBB Loss这两个方法的有效性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。