大型语言模型(LLMs)在生成文本时不可避免地会出现幻觉现象,因为其生成内容的准确性无法单靠模型参数中的知识来保证。尽管检索增强生成(RAG)是 LLMs 的一种实用补充,但其效果在很大程度上取决于检索到的文档的相关性,这也引发了人们对检索出错时模型表现的担忧。
为此,有学者提出了一种名为 Corrective Retrieval Augmented Generation(CRAG)的策略,以提升生成的鲁棒性。
具体而言,CRAG 包括一个轻量级的检索评估器,用于评估查询结果的整体文档质量,并返回一个置信度评分,根据该评分触发不同的知识检索操作。由于从静态、有限的语料库中检索到的文档可能并不理想,CRAG 还通过大规模 Web 搜索来扩展和增强检索结果。
此外,论文设计了一种“分解-重组”(decompose-then-recompose)算法,能够对检索到的文档进行选择性处理,聚焦于关键信息并过滤掉无关内容。
CRAG 具备即插即用的特性,可与各种基于 RAG 的方法无缝结合。实验结果表明,在涵盖短文本和长文本生成任务的四个数据集上,CRAG 显著提升了 RAG 方法的性能。
CRAG通过纠正策略来提升生成的鲁棒性,其工作流程如下图所示。
这个过程展示了 CRAG(Corrective Retrieval Augmented Generation)在推理阶段的操作流程。首先,给定一个查询(如“谁是《死亡蝙蝠侠》的编剧?”),系统会进行初步的文档检索,返回一组检索到的文档(如d1d_1d1 和d2d_2d2)。
接着,检索评估器会对这些检索到的文档与查询的相关性进行评估,判断它们是否能正确回答查询问题,并估计出一个置信度等级。根据评估结果,系统会触发不同的知识检索操作,分为三种情况:正确(Correct)、模糊(Ambiguous) 和 错误(Incorrect)。
对于评估为正确的文档,系统会直接将检索到的文档及其相关知识传递给生成器进行生成。
如果评估为模糊,系统会进入知识细化阶段(Knowledge Refinement)。在此阶段,首先对文档进行分解和清理,提取出可能有用的片段,然后经过过滤过程筛除无关信息,再将提炼后的信息重新组合成新的知识项,传递给生成器进行生成。
当文档评估为错误时,系统会启动知识搜索阶段(Knowledge Searching)。在这个阶段,会对原始查询进行重写,添加更多的上下文信息,并使用扩展后的查询进行大规模的 Web 搜索,以找到更相关的文档。通过对搜索结果进行筛选,最终选出更符合需求的文档传递给生成器。
在整个流程中,生成器会根据不同的知识来源(正确、模糊、错误)生成最终的响应,以提供更加准确和可靠的答案。
算法伪代码:
Corrective Retrieval Augmented Generation (CRAG) 旨在提升生成的鲁棒性,其核心是通过轻量级检索评估器来区分和触发三种不同的知识检索操作。借助 Web 搜索的扩展和优化知识利用,CRAG 显著增强了自动自我纠正的能力,并有效地利用检索到的文档信息。实验结果广泛证明了 CRAG 对 RAG 方法的适应性,以及在短格式和长格式生成任务中的泛化能力。
虽然 CRAG 主要从纠错的角度对 RAG 框架进行改进,并能与各种 RAG 方法无缝结合,但仍需要对外部检索评估器进行微调。未来的研究将集中于如何淘汰这一外部评估器,为 LLMs 配备更强大的检索评估能力,以进一步提升系统的智能性和性能。
论文开源项目CRAG(https://github.com/HuskyInSalt/CRAG)实现了纠正RAG。该项目运行需要Python 3.11环境,其他更多内容,感兴趣的读者可访问该项目自行阅读。
此外,LangChain框架也实现了CRAG的应用,其中LangChain框架被用来处理检索增强生成(RAG)的复杂流程,LangGraph则是用于从头构建图工作流的工具。
在 CRAG 的操作流程中,如果至少有一篇文档的相关性超过预设阈值,那么系统就会继续生成响应。在生成之前,还会执行知识细化步骤,将文档分割为“知识片段”,对每个片段进行评分,并过滤掉不相关的内容。
如果所有文档的相关性都低于阈值,或者评估器无法确定相关性,系统将寻求额外的数据源进行补充。这时,CRAG 会使用网络搜索来增强原有的检索结果,从而提高信息的全面性和准确性。
在实现过程中,一些步骤可以被简化或调整。例如,初次尝试时可以跳过知识细化阶段,如果需要,可以在后续版本中作为独立节点添加回去。当某些文档被判定为不相关时,可以选择通过网络搜索来补充检索,优化查询以获得更相关的结果。
关键代码如下:
from langchain.schema import Document`` `` ``def retrieve(state):` `"""` `Retrieve documents`` ` `Args:` `state (dict): The current graph state`` ` `Returns:` `state (dict): New key added to state, documents, that contains retrieved documents` `"""` `print("---RETRIEVE---")` `question = state["question"]`` ` `# Retrieval` `documents = retriever.get_relevant_documents(question)` `return {"documents": documents, "question": question}`` `` ``def generate(state):` `"""` `Generate answer`` ` `Args:` `state (dict): The current graph state`` ` `Returns:` `state (dict): New key added to state, generation, that contains LLM generation` `"""` `print("---GENERATE---")` `question = state["question"]` `documents = state["documents"]`` ` `# RAG generation` `generation = rag_chain.invoke({"context": documents, "question": question})` `return {"documents": documents, "question": question, "generation": generation}`` `` ``def grade_documents(state):` `"""` `Determines whether the retrieved documents are relevant to the question.`` ` `Args:` `state (dict): The current graph state`` ` `Returns:` `state (dict): Updates documents key with only filtered relevant documents` `"""`` ` `print("---CHECK DOCUMENT RELEVANCE TO QUESTION---")` `question = state["question"]` `documents = state["documents"]`` ` `# Score each doc` `filtered_docs = []` `web_search = "No"` `for d in documents:` `score = retrieval_grader.invoke(` `{"question": question, "document": d.page_content}` `)` `grade = score.binary_score` `if grade == "yes":` `print("---GRADE: DOCUMENT RELEVANT---")` `filtered_docs.append(d)` `else:` `print("---GRADE: DOCUMENT NOT RELEVANT---")` `web_search = "Yes"` `continue` `return {"documents": filtered_docs, "question": question, "web_search": web_search}`` `` ``def transform_query(state):` `"""` `Transform the query to produce a better question.`` ` `Args:` `state (dict): The current graph state`` ` `Returns:` `state (dict): Updates question key with a re-phrased question` `"""`` ` `print("---TRANSFORM QUERY---")` `question = state["question"]` `documents = state["documents"]`` ` `# Re-write question` `better_question = question_rewriter.invoke({"question": question})` `return {"documents": documents, "question": better_question}`` `` ``def web_search(state):` `"""` `Web search based on the re-phrased question.`` ` `Args:` `state (dict): The current graph state`` ` `Returns:` `state (dict): Updates documents key with appended web results` `"""`` ` `print("---WEB SEARCH---")` `question = state["question"]` `documents = state["documents"]`` ` `# Web search` `docs = web_search_tool.invoke({"query": question})` `web_results = "\n".join([d["content"] for d in docs])` `web_results = Document(page_content=web_results)` `documents.append(web_results)`` ` `return {"documents": documents, "question": question}`` `` ``### Edges`` `` ``def decide_to_generate(state):` `"""` `Determines whether to generate an answer, or re-generate a question.`` ` `Args:` `state (dict): The current graph state`` ` `Returns:` `str: Binary decision for next node to call` `"""`` ` `print("---ASSESS GRADED DOCUMENTS---")` `state["question"]` `web_search = state["web_search"]` `state["documents"]`` ` `if web_search == "Yes":` `# All documents have been filtered check_relevance` `# We will re-generate a new query` `print(` `"---DECISION: ALL DOCUMENTS ARE NOT RELEVANT TO QUESTION, TRANSFORM QUERY---"` `)` `return "transform_query"` `else:` `# We have relevant documents, so generate answer` `print("---DECISION: GENERATE---")` `return "generate"
CRAG 通过这些步骤,显著提升了系统在复杂信息环境下的鲁棒性和灵活性,增强了对检索文档的有效利用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。