企业战略管理是指企业高层管理人员为了实现企业的长期生存与发展,在深入分析企业内外部环境的基础上,确定和选择有效的战略,并将其付诸实施、控制和评价的动态管理过程。这一过程涉及明确企业的核心能力,制定有效的战略活动领域,以获得并维持企业的竞争优势。
一、什么是战略及战略历程
1.1 什么是战略:
战略是一种统领性的、全局性的、左右胜败的谋略、方案和对策。它来源于军事,古称“韬略”,指对战争全局的筹划和谋略。在现代,战略一词被引申至政治和经济领域,其涵义演变为泛指组织为了实现长期的生存和发展,在综合分析组织内部条件和外部环境的基础上做出的一系列带有全局性和长远性的谋划。通俗地理解:战略就是做正确的事(而战术则是正确地做事)。
1.2 寻找战略的历程:
寻找战略的历程涉及对企业内部和外部环境的深入分析,以及对企业未来发展方向的清晰规划。这个过程包括以下几个关键步骤:
-
战略认知:发现、关联、一分为三,认识自己与认识世界,小道理服从大道理,东方战略思维的复兴。
-
战略分析:包括宏观环境分析(PEST分析)和微观环境分析(五种力量模型),以及对企业内部资源和能力的分析(价值链分析)。
-
战略制定:基于分析结果,确定组织的远景目标和行动纲领,选择符合企业资源和能力的战略。
-
战略实践:将战略转化为具体的行动计划,并在组织中实施这些计划。
-
战略评价与修正:对战略实施的结果进行评价,根据反馈进行必要的调整和修正。
二、战略认知、战略分析和战略实践
2.1 如何进行战略认知
发现、关联、一分为三:认识到世界上不是缺少美,而是缺少发现;世界上貌似不关联的东西都是关联的,关键是发现其内在的相关性并打通它;世界不是非黑即白的,在两极之间有着广阔的灰度地带,要学会一分为三地看问题。
-
认识自己与认识世界:深入了解企业自身的优势、劣势,同时对外部环境有清晰的认识。
-
小道理服从大道理:确保局部决策与整体战略保持一致。
-
东方战略思维的复兴:借鉴东方哲学和战略思维,强调整体性和动态平衡。
2.2 如何进行战略分析
-
宏观环境分析(PEST分析):分析政治&法律、经济环境、社会&自然、技术环境对企业的影响。
-
微观环境分析(五种力量模型):分析新进入者威胁、供应商谈判能力、客户砍价能力、替代品威胁和行业内竞争。
-
内部资源与能力分析:通过价值链分析确定企业的核心竞争力。
-
SWOT分析:识别企业的优势(S)、劣势(W)、机会(O)和威胁(T)。
2.3 如何进行战略制定
-
预见:基于对趋势和转折点的判断,进行战略预见。
-
找魂:找出企业的定位、方向和指导方针。
-
聚焦:找到关键点进行聚焦,寻求突破。
-
协同:围绕战略目标和聚焦点,将各种要素和行动协同起来形成系统力量。
2.4 如何进行战略实践
-
培养战略统帅:培养具有战略眼光和领导力的人才。
-
找到关键突破口:确定战略实施的优先领域和关键项目。
-
把握战略节奏:设计灵活的战术节奏和分步走的战略路线图。
-
权变:在变化中掌握主动权,做好战略实验,把握时代变局。
2.5 如何避免战略陷阱
-
人性弱点与战略陷阱:避免过度超前、四面出击、机会主义、统帅迷失、故步自封、政商关系等陷阱。
-
摆脱陷阱与自我超越:对趋势变化保持敏锐的感知,认清自己的能力边界,保持敬畏之心,学会做减法,拒绝诱惑,保持归零心态。
-
战略执行的陷阱:避免中高层领导注重短期回报、回到老路上去、内部及外部利益相关者未达成共识、中层管理干部的阻力、沟通不畅、急于求成、阶段性目标不具体、激励措施跟不上等问题。
64页PPT方案
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。