斯坦福推STORM:智能RAG实现复杂研究目标

斯坦福大学最新推出的AI研究系统STORM,让「提问-回答」式RAG黯然失色!

这个名为STORM(Synthesis of Topic Outlines through Retrieval and Multi-perspective Question Asking)的系统,不仅支持复杂研究任务,还能生成维基百科风格的文章

更厉害的是,它还通过了10位资深维基百科编辑的考验!

STORM:AI研究的新范式

STORM与传统的RAG(检索增强生成)系统有何不同?它采用了一种巧妙的方法:通过模拟多视角对话来达成研究目标

具体来说,STORM会:

  1. 使用LLM代理模拟「视角引导对话」

  2. 扩展「大纲驱动RAG」以生成更丰富的文章内容

这种方法不仅能处理复杂的多步骤长上下文研究任务,还能生成高质量的研究文章。

维基百科编辑都说好

STORM的表现如何?史丹福大学找来了10位经验丰富的维基百科编辑进行评测。

结果显示:

  • 70%的编辑认为STORM在写作前期的研究阶段非常有用

  • 在与传统文章生成方法的对比中,STORM在多个指标上都表现出色

这些结果表明,STORM不仅能协助研究,还能生成高质量的初稿,为人类编辑提供有力支持。

开源且支持本地文档

STORM的另一大亮点是它的开放性:

  • 开源:代码已在GitHub上公开

  • 支持多种实现:包括Python包和基于LangGraph的实现

  • 灵活的数据源:不仅支持网络搜索,还能对接本地文档库

这意味着研究人员和开发者可以根据自己的需求定制STORM,甚至将其应用于专有数据集。

仓库地址:

https://github.com/stanford-oval/storm/tree/main

实际应用:FEMA灾害应对文档分析

为了测试STORM的实际效果,研究人员使用了34份来自美国联邦应急管理局(FEMA)的灾害准备和应对文档。

def  parse_pdfs (): ``    """`    `解析指定目录中的所有 PDF 文件并加载其内容。``   `    `此函数遍历 PDF_DIR 指定的目录中的所有文件,`    `检查它们是否具有 .pdf 扩展名,并使用 PyPDFLoader 加载其内容。`    `每个 PDF 的加载内容都附加到列表中,然后返回该列表。``   `    `返回:`        `列表:包含所有已加载 PDF 文档内容的列表。`    `"""`     `docs = []``     pdfs = os.listdir(PDF_DIR)  ``     print ( f"我们有{ len (pdfs)} 个pdfs" )  ``     for pdf_file in pdfs:  ``         if  not pdf_file.endswith( ".pdf" ):  ``             continue  ``         print ( f"正在加载 PDF:{pdf_file} " )  ``        file_path = f" {PDF_DIR} / {pdf_file} "`         `loader = PyPDFLoader(file_path)``         docs = docs + loader.load()  ``        print ( f"已加载{ len (docs)}文档”)``   `    `返回文档``   ``   ``docs = parse_pdfs()``   ``text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000,chunk_overlap = 200)``chunks = text_splitter.split_documents(docs)

他们提出了一个具有挑战性的问题:

比较不同类型灾害的财务影响及其对社区的影响

def  summary_text ( text, prompt ): ``    """`    `根据用户的提示生成一些文本的摘要``   `    `参数:``   `    `text (str) - 要分析的文本`    `prompt (str) - 关于如何总结文本的提示说明,例如“生成标题”``   `    `返回:``   `    `summary (text) - LLM 生成的摘要``   `    `"""`     `messages = [``         (  ``             "system" ,  ``             "您是一位助手,可以非常简短地用一句话描述文本。" ,  ``         ),  ``         ( "human" , f" {prompt} :: \n\n {text} " ),  ``     ]  ``     ai_msg = llm.invoke(messages)  ``     summary = ai_msg.content  ``return summary` `   ``   ``def  enrich_metadata ( docs ): ``    """`    `使用 LLM 填充文本块的“标题”和“说明” 参数``   `    `:``   `    `docs (list) - LangChain 文档列表``   `    `返回:``   `    `docs (list) - 填充了元数据字段的 LangChain 文档列表``   `    `"""`     `new_docs = []``for doc in docs:` `   `        `# pdf 名称是 doc.metadata['source'] 的最后一部分`        `pdf_name = doc.metadata[ "source" ].split( "/" )[- 1 ]` `   `        `# 在 df 中查找 pdf_name 位于 URL 中的行 row`         `= df[df[ "Document" ]. str .contains(pdf_name)]``        page = doc.metadata[ "page" ] + 1`         `url = f" {row[ 'Document' ].values[ 0 ]} ?id= { str (uuid4())} #page= {page} "` `   `        `# 我们将使用 LLM 生成文本的摘要和标题,由 STORM 使用`        `# 这仅用于演示,正确的应用程序应该有更好的元数据`        `summary = summary_text(doc.page_content, prompt= "请描述此文本:" )``         title = summary_text(  ``            doc.page_content, prompt= "请为此文本生成一个 5 字的标题:"`         `)` `   `        `doc.metadata[ "description" ] = summary``        doc.元数据[ “标题” ] = 标题 doc.元数据`        `[ “网址” ] =网址 doc``.元数据[ “内容”] = doc.page_content` `   `        `# print(json.dumps(doc.metadata, indent=2))`         `new_docs.append(doc)` `   `    `print ( f"有{ len (docs)}个文档" )` `   `    `return new_docs` `   ``   ``docs = enrich_metadata(docs)` `chunks = enrich_metadata(chunks)

这个问题不仅复杂,而且在给定的文档中并没有直接的答案。STORM需要综合分析多个文档,提取相关信息,并生成一个全面的报告。

结果,STORM成功生成了一篇结构清晰、引用准确的研究文章。这充分展示了STORM在处理复杂研究任务时的强大能力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值