摘 要:针对项目式学习面临的学习内容增加、知识体系重构以及学习方式变化等难题,提出了一种融合大语言模型(LLM)与知识图谱技术的高校AI项目导师系统构建方案。其中,大语言模型实现自然语言的理解和生成,而知识图谱负责专业知识库和增强大语言模型输出的可解释性和可靠性。高校AI项目导师能提供准确、个性化且全面的项目学习指导,使学习者有效应对各种复杂的项目式学习情境。“人工智能创新项目设计”课程的实证研究表明,采用高校AI项目导师系统显著提升了学生的课程参与度,促进了学生的工程创新素养、工程人文素养及AI素养三大核心素养的发展,并有效提高了学生对课程的满意度。这表明将大语言模型技术与知识图谱技术相结合而开发的在线教育工具,在提升教学质量、激发创新能力等方面展现出较高的发展潜力。
关键词:大语言模型;知识图谱;项目式学习;人工智能;AI导师
引言
在当今知识经济迅速发展的时代背景下,高等教育机构肩负着为社会输送高质量人才、塑造未来社会发展主力军的重任。《教育信息化2.0行动计划》和《新一代人工智能发展规划》等多个文件中提出,要以数字技术赋能教与学的全过程,为整个教育流程提供更为智能化且个性化的服务[1]。项目式学习作为全球工程教育的典型教学法,逐渐渗透至高等教育层面,并在高校学生知识技能习得、高阶能力提升等方面产生了显著影响[2]。
尽管项目式学习具有许多优势,但在高校的应用中也面临一些挑战,主要表现在以下几个方面:第一,学习内容增加。项目式学习需要学生同时涉猎多个学科的知识,这无疑会增加学生的知识获取量和理解难度,从而带来其学习负担[3]。第二,知识体系重构。项目式学习需要整合并衔接多学科知识,形成统一的知识体系。这需要学生理解并重组知识,对于一些学生来说,这种知识体系的变化可能会带来一定的学习负担[4]。第三,学习方式变化。项目式学习重视学生的主动参与和探究,要求学生适应更为主动的学习模式以解决问题。对于一些学生来说,这种学习方式的变化可能会带来一定的学习负担。
随着2022年11月ChatGPT的问世,国内外掀起了大语言模型(Large Language Model,简称LLM)的研究热潮。在教育领域,大语言模型辅助教学,即LLM AI导师作为一种新颖的教学模式正在引起越来越多的关注。LLM AI导师与教师协同,提供丰富的教学资源、个性化的学习支持和实时反馈评估,能有效提高教学效率和质量,推动学生的综合素质和创新意识不断提升。然而,LLM有时可能作出不准确或不连贯的回答,且在特定知识领域内的精确度和可靠性有待提高,这导致AI导师发展陷入瓶颈。知识图谱是一种用于描述实体、概念及其内在关系的网络化知识表示方法[5]。利用知识图谱的全局视角、概念模型和关系链接等语义集合对LLM生成结果进行推理,以知识图谱推理到的数据作为LLM的输出,能增强LLM输出的事实可靠性和可解释性[6]。因此,融合大语言模型和知识图谱的方法成为解决AI导师发展瓶颈的有效途径。如何有效地整合两者的优势进行教育场域的创新应用,是当前研究的一个重要方向。
本研究聚焦于大语言模型和知识图谱协同的高校AI项目导师系统构建,并将其应用于高校课程“人工智能创新项目”。其中,大语言模型实现自然语言的理解和生成,而知识图谱负责专业知识库和增强提问。并且,本研究创新性地采用大语言模型增强生成技术(Retrieval-Augmented Generation,简称RAG)实现知识图谱对大语言模型的可解释性增强,从而提供更准确、个性化且全面的项目学习指导,使学习者能够更有效地应对各种复杂的项目式学习情境。
一、相关研究概述
(一)大语言模型教育应用
在教育领域,基于大语言模型的人机对话教学进入智慧问学新境界,能通过大语言模型实现递进式问答对话与迭代式内容生成[7]。大语言模型提供的情感信息促进更深层次的人机交互[8]。哈佛大学针对入门级编程课程“计算机科学导论”(CS50)设计了LLM AI助手“CS50 bot”,能回答学生的问题,辅助学生迅速找到代码运行失败的原因,甚至对程序的设计进行调试和反馈。北京大学“图像处理中的数学方法”课程LLM AI助教Brainiac Buddy,它能灵活利用大语言模型的自定义prompt,在很大程度上提升教育效率,实现教育的个性化和定制化。华沙生命科学大学和宾夕法尼亚大学的研究人员通过对照组和实验组的对比研究,发现以ChatGPT(GPT-3.5)为核心的LLM AI助教提供的代码改进建议、编译错误解释和调试提示等个性化提示能大幅缩短学生解题时间。
综上所述,这些LLM AI导师的优点是具有高度的灵活性,能够适应多种教学内容和场景,也能够处理复杂和多样的自然语言输入和输出,甚至生成一些新颖和有趣的内容。然而,由于LLM本质上是生成式人工智能,模型常常表现为黑盒形式,因此无法揭示其决策步骤和推理机制。
(二)项目式学习
项目式学习是一种以项目为核心的教学方法,旨在通过实际应用和解决问题的方式,促使学生主动参与、合作学习和综合运用知识与技能。有研究者提出,学生通过实践和解决问题来学习,为项目式学习的发展奠定了基础[9]。项目式学习的实施涉及多个相关理论和方法,其中,建构主义理论认为学生通过积极参与和建构知识来实现深层次的学习,社会互动理论强调学生在合作和互动中共同构建知识和理解,问题解决和探究学习理论强调学生通过解决实际问题和探究学习,发展关键思维和解决问题的能力[10]。此外,项目管理和协作技能也是项目式学习的重要组成部分,包括团队合作、沟通、时间和资源管理等。
随着科技进步和教育改革深化,项目式学习在21世纪得到了更广泛的应用和研究,许多国家的教育机构和学校开始采用该方法培养学生的创新能力、处理问题的能力与团队协作能力。目前,项目式学习已经成为教育领域的一个重要研究方向,学者们关注其实施策略、学生参与度、成果评估等方面的问题,并提出了一系列的理论模型和实践指导[11]。同时,也有一些研究关注项目式学习对学生的学习动机、学习兴趣和学习态度的影响,以及项目式学习在不同学科和教育阶段的应用情况。
项目式学习的流程通常包括以下几个阶段:项目选择与规划、团队组建与分工、研究与探究、设计与实施、呈现与评估。在项目选择与规划阶段,教师和学生共同确定项目的主题、目标和任务。在团队组建与分工阶段,学生组成小组,分工合作,共同完成项目。在研究与探究阶段,学生进行调查研究、资料收集和问题分析,以获得必要的知识和信息。在设计与实施阶段,学生根据项目要求,制订解决方案并进行实践操作。在呈现与评估阶段,学生向他人展示项目成果,并接受评估和反馈。
总之,项目式学习通过跨学科整合思维、依据循证的教学实践、立足于建构主义与认知科学理论,积极推行主动学习等核心理念,有效提升了工程人才培养质量。但是,当“以教为主”的方式转变为“以学为主”时,学生的学习负担将会加重,如学习内容增加、知识体系重构,以及学习方式改变导致的学习时间增加、认知负荷加重和社交情感压力等。这时急需自动化、智能化的新时代教学辅助工具给予帮助,并引导学生掌握高效的学习手段与方案,以减轻负担、提高学习效率[12]。
二、高校AI项目导师设计
(一)设计理念
“人工智能创新项目设计”是面向高校所有专业、本科4种层次的创新创业通识课。在该课程的项目式教学过程中,存在两大问题:(1)专业不同、层次不同的学生在学习人工智能学科时,因基础差异而造成学习困难,因文化差异而造成融合不足。(2)传统人工智能课程过深过窄,跨界性低,缺乏把艰深的人工智能理论进行普及性教育的教学设计和教学方法。这些问题阻碍了学生的学习进度,并可能降低他们对人工智能的学习兴趣。
面向AI设计课的AI项目导师的设计理念,正是借助新兴的AI项目导师的个性化交互式学习,提升学生完成项目涉及的跨学科知识整合学习和循证学习的效率和质量,推动学生增加课程学习投入,进而提高其高阶思维能力。
(二)设计路径
本研究以高校AI通识课程“人工智能创新项目设计”为例,进一步阐述高校AI项目导师的设计路径。AI项目导师是一个环境系统,它由用户界面交互层、应用层、智能导师层与数据层共同构成,如图1所示。
最底层是庞大的课程资源,涵盖人工智能、产品创新创业、原型设计、工业设计等多种垂直知识领域及交叉学科知识。第二层是智能导师层,包括大语言模型,以及知识图谱增强的RAG技术,用于实现智能导学。第三层是应用层,根据教学程序与步骤分别构建应用模块,包括头脑风暴、竞品分析、AI算法、产品原型设计、项目PPT制作、项目商业计划书等。应用层以互联网web应用作为展现形式。第四层是交互层,主要是学生与平台之间进行的文本和语音的交互操作。
高校AI项目导师的设计特色包括如下几点:
1.聚焦基于大语言模型的AI项目导师设计
大语言模型作为智能导师的独特之处在于其强大的语言处理能力、生成能力、学习能力、个性化推荐能力和跨领域适应性。
2.注重基于知识图谱的检索增强生成
检索增强生成(RAG)是一种面向场景需求搭建大语言模型应用的模式[13]。RAG 将学生提问与知识图谱进行匹配,获取相关知识片段,并据此优化学生提问,构建出与学生提问最匹配的增强提问。最后再把增强提问输入,大语言模型,用于指导其产出更符合场景应用的回答。
3.依据“探究—实践—交流”的科学教学程序设计
“人工智能创新项目设计”教学程序设计包含课程铺垫、科学探究、工程实践和交流强化4个步骤,相应地,AI项目导师系统根据教学步骤设计出多个应用模块,且在不同应用模块中引用相适应的RAG模式。
(1)课程铺垫模块。该模块将实现课程目标、教学方法、项目组队和团队建设等任务,营造良好的学习氛围。为此,AI项目导师设计出“项目立项”模块的“头脑风暴”应用。学生通过与AI项目导师互动交流,汲取创意并确定项目的初步方向和目标。RAG技术整合了知识库中的“人工智能创新设计案例库”,在开放性对话中,学生能通过它获取宽泛的知识并以关键词形式查询相关优秀案例。通过AI交互学习和专业知识库查询验证的双师课堂机制,学生能够确立新颖且准确的人工智能创新项目设计题目。
(2)科学探究模块。该模块包括识别问题、协作研究与策略规划3个学习环节。为实现产业调研与实地考察,AI项目导师系统设计了“项目立项”模块的两大应用:“竞品分析”与“立项评估”。学生通过与AI项目导师互动学习,收集同类项目的实际信息和一手数据,为决策制定和项目设计提供参照。同时,学生需要将调研结果和数据分析填入专业知识库中的“竞品分析表”生成统计报表,完成规范且深入的项目探究。另外,还需要针对项目设计题目进行多维度评估,培养项目式学习的过程性评价能力。
(3)工程实践模块。该模块包含设计建造和测试改进两个实践流程。为此,AI项目导师系统设计出“项目算法”和“软件开发”两个模块。其中,项目算法模块包括“体验算法”“AI写代码”“AI算法评估”三个应用。“体验算法”调用专业知识库中的AI算法库,让学生系统性了解并体验前沿人工智能算法,学习人工智能知识。“AI写代码”调用LLM,让学生通过多轮对话逐步理解人工智能算法的代码实现,提升人工智能技术实践能力。“AI算法评估”调用专业知识库中的AI算法评价表,让学生填入项目设计算法的多维度评分值,培养学生项目式学习的过程性评价能力。另外,软件开发模块包括“UI原型设计”和“产品外观评估”两个应用。“UI原型设计”调用LLM,让学生通过文生UI大语言模型实现产品原型图的交互设计。同时,学生需要在“产品外观评估”应用中填入项目设计原型图的多维度评分值,培养学生项目式学习的过程性评价能力。
(4)交流强化模块。该模块以学生项目路演以及跨领域、跨专业的教师团队教学辅导的模式,辅助学生实现学习的结构化深度反思。为此,AI项目导师系统设计出“项目路演”的“PPT生成”“报告生成”“路演评估”等应用。其中,“PPT生成”调用文生PPT大语言模型生成项目汇报PPT,让学生通过交互式多轮对话逐步完善项目PPT的制作。“报告生成”融合大语言模型和商业计划书纲要,通过RAG技术实现合规的项目商业计划书生成。最后,学生需填入项目路演多维度评分值,培养项目式学习的过程性评价能力。
4.促进纳入AI项目导师角色的项目组队和团队建设
“人工智能创新项目设计”通过项目组队和团队建设来达到人才培养、科学探究和教育管理的目标。然而,传统的项目组队方式在管理上存在局限性。AI项目导师系统将AI项目导师纳入项目组队,AI项目导师在项目组承担的角色和任务包括但不限于数据分析师、任务协调员、创新专员、产品决策支持等。总之,AI项目导师在项目组队中可以承担多个角色,为项目的顺利进展提供支持和服务。
三、高校AI项目导师的应用
(一)研究假设
为验证高校AI项目导师的有效性,本研究提出假设,认为“人工智能创新项目设计”AI项目导师:(1)能够明显提高学生的学习投入;(2)能够有效提升学生的工程创新素养、工程人文素养与AI素养;(3)可以显著提高学生对课程的满意度。
(二)数据采集与分析
教学团队对2023年9月至2024年2月选修“人工智能创新项目设计”课程的学生进行多轮问卷调查,采集到252份问卷。问卷分为3个部分:第一部分为高校AI项目导师对项目式学习的支持度;第二部分是学生与高校AI项目导师的对话内容;第三部分是满意度评估,主要包括高校AI项目导师使用体验和教学实施满意度评估等。
(三)结果分析
1.学生认为AI项目导师在项目创建中提供了有力的支持
通过分析调研结果可知:第一,大部分同学认为“头脑风暴”环节中的回答符合自身需求,个性化程度高,回答的精确度高。不过,AI项目导师为项目提供全面资料这个优点没有得到广泛认同,这需要AI项目导师系统继续创建更大的专业知识库。第二,大部分同学认同算法功能丰富多样,用户能够迅速掌握各类算法,这些算法容易应用到实际项目中。第三,UI原型设计方面,大部分学生满意平台给出的设计思路,认为平台满足了项目实际需求。第四,在路演功能上,大部分学生认同其基于关键字生成内容的灵活性。总体而言,学生认为平台集成了智能和全面性的特点,为他们的学术和项目研究提供了全方位的支持。学生对高校AI项目导师在项目创建中的支持评价普遍较高,各功能在不同方面为学生提供了积极的帮助,促进了项目的顺利进行。
2.平台能有效促进学生素养的提升
从调研结果上看(见图2),学生在多元情境下广泛使用本平台,涵盖了学习研究、项目策划与作业完成、探索新领域、执行学习任务及上课辅助、参与创新项目以及解决复杂专业问题。这些行为促进学生的素养提升表现在:第一,工程创新素养提升。学生利用平台进行学习研究、探索新领域、分析问题、评估项目可行性等,这是工程创新素养的重要体现。第二,工程人文素养提升。学生在时间紧迫或思路不明朗的情况下寻求平台的帮助,体现了他们具有良好的协作意识与自主学习能力,懂得如何借助团队力量和社会资源解决复杂专业问题,这正是工程人文素养的核心内容。第三,AI素养提升。学生在各类学术活动和项目挑战中频繁利用平台获取信息、指导及答疑解惑,说明他们能熟练使用现代信息技术工具,并适应了人工智能时代的学习模式,这反映了他们在AI素养上的成长。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。