无论你是否具备编程基础,都能够在扣子平台(Coze)上轻松搭建一个 AI Bot。本文将通过一个可以发送 AI 新闻的 Bot 作为示例,详细介绍在扣子平台上搭建 Bot 的步骤。
步骤一:创建一个 Bot
首先,你需要登录扣子平台并进入你的个人团队空间。系统默认会为你创建一个 Personal 的个人团队,该团队内的资源如 Bot、插件、知识库等仅供个人使用,无法分享给其他团队成员。当然,你也可以选择创建新的团队或加入其他团队来扩展你的工作范围。
进入团队空间后,默认会打开 Bots 页面。在这里,你可以点击创建新的 Bot,系统会引导你进入 Bot 的编排页面。在左侧的人设与回复逻辑面板中,你可以详细描述 Bot 的身份和任务,例如它是一个专门发送 AI 新闻的 Bot。单击复制按钮,可以使用模板格式快速添加描述。
步骤二:编写提示词
配置 Bot 的第一步是编写提示词,这是给大型语言模型(LLM)的指令,用于指导其生成输出。在 Bot 配置页面的人设与回复逻辑面板中,你需要输入清晰、具体的提示词。例如,你可以设置 Bot 在接收到“请发送一条 AI 新闻”的指令时,能够准确地回复相关的 AI 新闻内容。提示词越清晰,Bot 的回复就越符合预期。
步骤三:为 Bot 添加技能
设定好 Bot 的人设与回复逻辑后,接下来需要为 Bot 配置对应的技能。以本文中的获取 AI 新闻的 Bot 为例,你需要为它添加一个搜索新闻的接口,以便它能够获取并发送 AI 相关的新闻内容。在选择技能时,可以根据你的需求选择合适的接口或服务,并按照提示进行配置。
步骤四:测试你的 Bot
配置好 Bot 后,不要急于发布。你需要在预览与调试区域中测试 Bot 是否符合预期。你可以模拟用户的提问,观察 Bot 的回复是否准确、及时。如果发现问题,可以及时调整提示词或技能配置,直到 Bot 的表现满意为止。
步骤五:发布你的 Bot
完成测试后,你就可以将 Bot 发布到社交渠道中使用了。无论是在微信公众号、企业微信群还是其他社交平台上,你都可以将你的 AI Bot 分享给更多的用户,让他们享受到智能服务的便利。
通过以上五个步骤,你就可以在扣子平台上快速搭建一个 AI Bot,并让它为你提供智能化的服务。无论是获取信息、回答问题还是执行其他任务,AI Bot 都将成为你得力的助手。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。