在大模型训练领域,显存一直是一个让研究者和开发者头疼的问题。特别是在进行长文本上下文训练时,动辄需要几百GB的显存需求,这让很多研究者望而却步。不过最近,AI基础设施优化团队Unsloth带来了一个重大突破 - 他们推出的新算法可以让GRPO训练所需显存减少高达90%!文章公布了Llama3.1(8B) GRPO在Colab上notebook,见:https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-GRPO.ipynb
1、从510GB到54GB:显存优化的突破性进展
在传统的GRPO训练方案中,要训练一个支持20K上下文长度的Llama 3.1(8B)模型,需要高达510.8GB的显存。这个量级的显存需求,即便是顶配的训练服务器也难以满足。而Unsloth团队通过其创新的算法优化,将这一需求降低到了惊人的54.3GB,这意味着:
训练内存成本:从414GB降至42GB
GRPO内存成本:从78.3GB降至9.8GB
推理内存开销:从16GB降至0GB
20K上下文的推理KV缓存:保持在2.5GB
2、技术创新:三重优化方案
Unsloth团队采用了三个关键的技术创新来实现这一突破:
全新的线性算法:团队为GRPO开发了一个全新的内存高效线性算法,这个优化alone就减少了68.5GB的内存使用。更令人惊喜的是,通过torch.compile的协助,这个算法在性能上还实现了提速。
智能梯度检查点:通过将中间激活值异步卸载到系统RAM,在仅损失1%性能的情况下节省了惊人的372GB显存。这个优化特别适用于需要多次生成的场景。
共享内存空间:与其他实现不同,Unsloth可以与底层推理引擎(vLLM)共享GPU/CUDA内存空间,这又节省了16GB显存。
Unsloth团队从 Horace 的线性交叉熵实现中获得了灵感,并成功使其适用于 GRPO!实际上,我们发现了一些令人惊讶的点:
参考 GRPO 实现使用反向 KL 散度,而不是正向 KL 散度。
天真地实现浮点 16 混合精度(以及浮点 8)上的线性交叉熵,如果没有正确处理,将因自动混合精度缩放机制而崩溃。
我们发现 GRPO 损失函数实现中存在其他问题——主要是在反向 KL 散度的公式表达上。
Unsloth团队进行了 4 个实验:
通过参考实现(红线)进行常规 GRPO
移除断开代码(蓝色线条)
完整反向 KL,如前所述增加一个额外项(黄色线)
前向 KL 散度(绿色线)
一般来说,移除 detach 确实会破坏所有训练,所以我们必须保留它——这很可能需要更多的调查。看起来其他所有实现似乎都很相似?我们可能需要运行模型更长时间以看到不同的效果。
在所有实现中,Unsloth团队还利用了 logsumexp 技巧
3、实践意义:让更多开发者参与AI训练
这项技术突破的意义远不止于数字的优化。它意味着:
-
降低硬件门槛:原本需要多卡集群才能完成的训练任务,现在用单卡就能搞定。比如Qwen2.5 (1.5B)的训练现在只需要5GB显存!
-
提升研究效率:研究人员可以更快速地进行实验验证,加快模型迭代速度。
-
扩大应用场景:更多的小团队和个人开发者现在也能尝试大模型训练,这将极大促进AI技术的普及和创新。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。