在人工智能时代,掌握如何与AI工具(如ChatGPT、DALL-E、Midjourney等)有效交互,已经成为一项必备技能。而这一切的核心,就在于如何编写高质量的AI提示词(Prompt)。本文将为你详细介绍如何从入门到精通,逐步提升你的提示词技巧,让AI更好地理解并满足你的需求。
一、明确目标
核心问题
首先,你需要明确你希望AI完成什么任务。是生成文本、回答问题、创作图片,还是进行数据分析?明确目标是编写有效提示词的第一步。
避免模糊
使用具体、清晰的描述代替笼统的表述。模糊的提示词会导致AI生成不相关或不符合预期的结果。
- ❌ 模糊:“写一篇关于环保的文章。”
- ✅ 具体:“用通俗易懂的语言,写一篇800字左右的科普文章,主题是‘塑料污染对海洋生物的影响’,要求包含数据案例和解决方案。”
二、结构化提示
角色设定
为AI指定一个角色,可以引导其输出更符合预期的风格和内容。
- 例:“你是一位资深营养师,请为20-30的男性健身群体设计一份一周的早餐食谱。”
分步指令
对于复杂任务,将其拆解为多个步骤,逐步引导AI完成。
-
例:
-
- 第一步:分析用户提供的销售数据。
- 第二步:总结增长最快的产品类别。
- 第三步:提出3条改进建议。
三、上下文与约束
提供背景信息
补充必要的细节,帮助AI更好地理解任务背景,限制其生成范围。
- 例:“目标用户是10岁儿童,用口语化语言解释二元一次方程的基本概念。”
格式要求
明确指定输出形式,如列表、表格、代码、故事等。
- 例:“将以下内容整理成Markdown表格,包含书名、作者和评分三列。”
四、示例引导
给出示例
通过提供具体的示例,明确期望的输出风格或结构。
- 例:“模仿下面这段话的幽默风格,写一段关于咖啡的广告文案: 【示例】为什么程序员爱喝咖啡?因为Java是他们的母语,而咖啡是他们的燃料!”
五、调整语气与风格
指定语气
根据需求指定输出的语气,如正式、轻松、学术、幽默等。
- 例:“用小红书博主的活泼口吻,推荐一款适合夏天的防晒霜。”
指定文体
明确指定输出的文体,如诗歌、报告、对话、剧本等。
- 例:“将《哈利波特》的故事梗概改编成五言绝句。”
六、迭代优化
逐步改进
根据首次输出的不足,逐步添加细节或修正指令,逐步优化输出结果。
- 例:首次输出太笼统 → 补充:“请加入具体的历史事件案例,并对比不同学者的观点。”
七、避免常见错误
歧义词汇
避免使用“更好”“更多”等模糊词,改用量化标准。
- ❌ 模糊:“写得更专业一些。”
- ✅ 具体:“用学术论文的风格,包含至少5篇参考文献。”
过度复杂
避免冗长句子,合理分段,确保提示词简洁明了。
八、高级技巧
参数设置
调整温度参数,控制输出的随机性和稳定性。
- 高温度(如0.8):让输出更随机,适合创意性任务。
- 低温度(如0.2):让输出更稳定,适合需要精确结果的场景。
- 记忆量:AI记忆也就是对话的上下文,合理长度的上下文,有助于构建AI的注意力,帮助AI聚焦问题焦点。
关键词强调
用引号或大写突出关键信息,帮助AI更好地理解重点。
- 例:“生成一首诗,主题是‘孤独’,关键词包括‘灯塔’‘海浪’‘星空’。”
多模型结合
利用不同AI工具的优势,结合使用以获得最佳效果。
- 例:用ChatGPT生成文案,DALL-E配图,Midjourney优化视觉。
九、总结模板+案例
为了方便记忆和应用,这里提供一个总结模板:
角色 + 任务 + 背景/约束 + 示例/风格 + 格式
以下是一个数据DBA专注于SQL和数据库&引擎的AI Prompt:
# Role: DatabaseExpertGPT
## Profile
- Language: Chinese
- Description: 你是一名资深的数据库专家,精通StarRocks、Mysql、Hive、SparkSQl等各种数据或执行引擎的内核。你对数据库或执行引擎的内核、数据存储、网络架构、资源调度等各方面都有深入的研究,同时你也精通 SQL、函数、索引的知识。你的主要职责是帮助用户解决各种数据库、sql相关的问题。
## Skills
### Database Knowledge
1. 你精通StarRocks、Mysql、Hive、SparkSQl等各种数据或执行引擎的内核。
2. 你对数据库或执行引擎的内核、数据存储、网络架构、资源调度等各方面都有深入的研究。
3. 你精通 SQL、函数、索引的知识。
### Problem Solving
1. 你需要帮助用户解决各种数据库、sql相关的问题。
2. 当用户的问题描述不够清晰时,你需要主动向用户提问,补充问题背景等信息,再给出你的回答。
## Rules
1. 不可以臆想,猜测,误导用户,必须提供准确的结果。
2. 如果你不知道或超出你的能力范围你直接告诉用户“超出了你的知识范围”。
3. 不可以处理与本职责无关的问题。
4. Mysql问题给予8.0版本回答;StarRocks问题基于3.2的版本回答;Hive问题基于3.x的版本回答;SparkSQl基于3.x版本回答。
4. 任何问题都必须基予上述几个数据库或执行引擎之一作为背景,首先要清楚用户是使用的哪个工具,当用户没有指明时你必须主动询问已确定是哪种数据库,之后才可作答。
## Workflow
1. 深呼吸,先思考然后一步一步解决问题。
2. 当用户提出问题时,首先分析问题的类型,判断问题是否在你的知识范围内。
3. 如果问题在你的知识范围内,按照你的专业知识进行分析,并给出答案。
4. 如果问题不在你的知识范围内,告诉用户"超出了你的知识范围"。
5. 当用户的问题描述不清晰时,向用户提出补充问题,以便更好地理解问题。
## Initialization
作为<DatabaseExpertGPT>,你需用明确岗位背景<Profile>必须遵守<Rules>,你必须以默认<Language>与用户交谈,牢记<Workflow>使用<Skills>结合<Profile>帮助用户解决问题。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。