这几天被MCP刷屏了,人都刷麻了,虽然之前说Manus 的核心底层是MCP ,但是我并没有去研究MCP,因为MCP 的服务好像用不到,这几天看到一个GitHub 的MCP-Server,是不是我后面可以一键找GitHub项目?今天找了一个MCP 客户端项目什么是MCP客户端?
Model Context Protocol (MCP)客户端是能够与MCP服务器交互的应用程序或工具,它们使AI模型能够安全地访问和操作各种外部资源和服务。MCP客户端作为AI模型与外部世界之间的桥梁,极大地扩展了AI的能力边界。
MCP客户端的核心价值
- 扩展AI能力:使AI模型能够访问文件系统、数据库、API等传统上无法直接接触的资源
- 安全沙箱:通过协议规范确保AI操作外部资源时的安全边界
- 标准化接口:统一不同服务和资源的访问方式,简化AI集成
- 多模态支持:支持文本、图像、音频等多种数据类型的交互
官方与主流MCP客户端
企业级客户端
-
Glama Chat 🎖️ - 多模态AI客户端,内置MCP网关支持,提供直观的图形界面管理MCP连接
-
Anthropic Console - Anthropic官方开发的MCP调试与管理工具,支持协议高级功能
-
Cursor IDE - 智能编程环境,深度集成MCP实现代码辅助、依赖管理等开发功能
-
DeepSeek Terminal - 终端环境下的MCP客户端,特别适合开发者使用命令行与MCP服务交互
开源客户端
- MCP-CLI 🐍 - Python实现的命令行MCP客户端,轻量易扩展
- Node-MCP 📇 - TypeScript实现的MCP客户端库,适合Web应用集成
- Go-MCP 🏎️ - 高性能Go语言客户端,支持并发请求处理
- Rust-MCP 🦀 - 内存安全的Rust实现,注重性能与可靠性
按功能分类的MCP客户端
通用客户端
- MCP Playground - 网页版MCP交互式环境,适合快速测试与学习
- MCP-Jupyter - Jupyter Notebook扩展,支持在数据科学生态中使用MCP
领域专用客户端
-
浏览器自动化
-
- • Playwright-MCP-Client 📇 - 专为浏览器自动化设计的客户端
- • Puppeteer-MCP-Client 📇 - 控制无头Chrome的专用客户端
-
开发者工具
-
- • Git-MCP-Client - 版本控制专用客户端
- • Docker-MCP-Client - 容器管理专用接口
-
数据分析
-
- • Pandas-MCP - 将MCP服务集成到Pandas工作流
- • SQL-MCP - 统一SQL与NoSQL数据库访问
-
多媒体处理
-
- • FFmpeg-MCP - 视频处理专用客户端
- • OpenCV-MCP - 计算机视觉任务集成
MCP客户端开发资源
SDK与库
- Python SDK 🐍 - 官方Python客户端开发工具包
- TypeScript SDK 📇 - Web应用集成首选
- Java SDK ☕ - 企业级应用开发支持
- .NET SDK #️⃣ - C#生态集成方案
MCP客户端的应用场景
- AI助手增强:使聊天机器人能够操作真实世界系统
- 自动化工作流:连接不同系统的自动化管道
- 数据科学:安全访问敏感数据进行分析
- 教育工具:创建交互式学习环境
- 物联网控制:统一管理IoT设备接口
项目地址:https://github.com/punkpeye/awesome-mcp-clients
MCP客户端生态系统正在快速发展,为AI应用开启无限可能。无论是开发者、研究者还是终端用户,都能从中发现提升工作效率和创造力的新机会。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。