Llama3.2开源:Meta发布1B和3B端侧模型、11B和90B多模态模型

最近这一两周不少互联网公司都已经开始秋招提前批面试了。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

总结如下:

《AIGC 面试宝典》圈粉无数!
《大模型面试宝典》(2024版) 发布!

喜欢本文记得收藏、关注、点赞。


开源啦!开源啦!

早上起来发现,Meta AI又开源模型,文本模型开源了端侧小模型1B和3B模型,也是首次开源了多模态大模型11B和90B两个版本;同时还开源了一个 Llama Stack项目。

Blog: https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
HF: https://huggingface.co/collections/meta-llama/llama-32-66f448ffc8c32f949b04c8cf

其中Llama3.2多模态模型在图像识别和一系列视觉理解任务方面效果优于Claude 3 Haiku 和 GPT4o-mini。文本模型-Llama3.2-3B模型在循指令、总结、提示重写和工具使用等任务上优于 Gemma 2 2.6B 和 Phi 3.5-mini 模型。

图片

多模态模型效果

图片

端侧模型效果

多模态模型

Llama3.2的11B和90B模型多模态是基于Llama3.1-8B、70B文本模型上,增量增加图像模型。

pretrain阶段:

  • 文本模块由Llama3.1模型初始化,并初始化图像编码器,利用大规模噪声(图像、文本、6B数据对)对数据进行预训练

  • 再用中等规模的高质量的领域、知识增强的(图像、文本、3M数据对)数据预训练。

posting-train阶段:

  • 通过监督微调、拒绝采样和直接偏好优化进行多轮对齐

  • 使用 Llama 3.1 模型 过滤和增强 图像上的问题和答案,利用合成数据生成和奖励模型对所有候选答案打分排序,获取高质量的微调数据

  • 还添加了安全数据

端侧小模型

1B和3B模型都是基于8B模型裁剪后进行模型初始化,并且利用8B和70B模型进行模型蒸馏,9T数据预训练。

特别注意,这里蒸馏不是那种通过更大模型进行数据生成的蒸馏,而是再模型训练阶段,利用8B 和 70B 模型输出的 logits 影响模型loss,也就是传统的蒸馏方法

图片

在post-traning阶段,训练方式语Llama3.1一致,采样监督微调、拒绝采样和直接偏好优化模型。

最后模型支持上下文扩展到 128K 个,同时也针对性优化了模型的多种能力,例如摘要、重写、指令遵循、语言推理和工具使用。

Llama Stack项目

Github: https://github.com/meta-llama/llama-stack

定义并标准化了将生成式 AI 应用程序推向市场所需的构建模块,跨越整个开发生命周期:从模型训练和微调,到评估,再到在生产环境中构建和运行AI Agent。

主要是为了简化开发人员在不同环境(包括单节点、本地、云和设备上)中使用 Llama 模型的方式,帮助快速实现检索增强生成、工具使用等能力的快速部署。

关于Llama 3.2模型的关键信息如下: - **发布日期与改进** Llama 3.2是在2024年9月份发布的版本,对原有的8B70B Llama 3.1模型进行了增强,并新增了11B90B多模态模型,赋予其视觉能力[^1]。 - **适用场景** 对于边缘设备移动应用的任务,如个人信息管理或多语言知识检索,存在一款非常合适的选择——即3B文本模型,该模型不仅适合这些应用场景而且体积较小,便于部署在资源受限环境中[^2]。 - **特性亮点** - 视觉能力推理性能 作为当前最强大的开源多模态模型之一,Llama 3.2 Vision展示了卓越的视觉理解推理能力,在多种任务上表现出色,比如视觉推理与定位、文档问答及图像到文本搜索等。尤其值得注意的是,这种能力让Llama 3.2能够生成高质量的思维链条(CoT),从而显著提升了复杂问题解决时的表现。 - 开源性与定制化潜力 此系列模型开源性质并且允许高度个性化配置;特别是针对那些寻求高性能但又希望保持灵活性的应用开发者而言尤为理想。除了常规的基础训练之外,还有经过特定领域指导调整过的变体可供选择,进一步提高了实际使用价值[^3]。 - 技术细节 - 基础结构与优化措施 基于先前版本成功的自回归语言模型(Transformer)架构,Llama 3.2继续沿用了这一设计思路,并通过引入监督微调(SFT)以及利用人类反馈驱动的学习机制(RLHF),来确保输出结果既符合预期又能体现人文关怀社会责任感. ```python # 示例代码展示如何加载并初始化一个预训练后的Llama 3.2模型 from transformers import AutoModelForVisionQA, AutoProcessor model_name_or_path = "meta-llama/Llama-3.2-vision" processor = AutoProcessor.from_pretrained(model_name_or_path) model = AutoModelForVisionQA.from_pretrained(model_name_or_path) image_url = "https://example.com/image.jpg" text_query = "What's in this picture?" inputs = processor(image=image_url, text=text_query, return_tensors="pt") outputs = model.generate(**inputs) answer = processor.decode(outputs[0], skip_special_tokens=True) print(f"The answer to '{text_query}' is: {answer}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值