Meta 刚刚发布了 Llama 3.2,将语言和视觉模型整合到一个强大的多模态系统中。它引入了四个模型:两个轻量级文本模型(1B 和 3B)和两个视觉模型(11B 和 90B)。这些模型专为一系列任务而设计,从总结长文档到以复杂的方式理解图像。
NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割
1、向多模态系统的转变
人工智能世界正在向多模态系统转变,该系统可以同时处理文本和图像。GPT 的多模态变体、Mistral 的 PixTral 以及现在的 Meta 的 Llama 3.2 等模型正在引领潮流。这些模型旨在处理多种类型的输入,这意味着它们可以同时阅读和理解文本、查看图像,甚至可以同时对两者进行推理。
早期的模型可以“阅读”或“查看”,但不能同时进行。多模态模型结合了这些能力,例如与可以查看地图并向你指出事物的人交谈。
2、轻量级文本模型:Llama 3.2 与 Llama 3.1
让我们从 Llama 3.2 的轻量级文本模型开始。这些是 1B 和 3B 模型,设计为小而高效。它们可以处理大型上下文(最多 128,000 个标记)——想象一下在本地设备上运行涉及阅读和总结一本厚书的对话。
2.1 是什么让这些模型“轻量级”?
与笨重且需要大量计算能力的传统模型不同,轻量级模型经过优化,既快速又小巧。Meta 使用两种技术来实现这一点:
- 修剪(pruning):在不牺牲性能的情况下删除模型中不太重要的部分