大模型论文浅尝 | GenTKG:结合大语言模型的时间知识图谱生成式预测(NAACL2024)

笔记整理:喻靖,浙江大学硕士,研究方向为大语言模型

论文链接:https://arxiv.org/pdf/2310.07793

发表会议:NAACL2024

摘要

随着大语言模型(LLMs)的迅速发展,人们对时间知识图谱(tKG)领域的兴趣日益增长。传统上,tKG领域的预测任务主要由基于嵌入和基于规则的方法主导。然而,这些方法在处理复杂的时间关系数据时存在显著局限性,特别是在应对数据规模、复杂的图结构,以及模型在不同数据集和时间切分下的适应性时。为了探索大语言模型在处理时间关系数据方面的潜力,本文提出了一种新的生成式预测框架GenTKG,该框架结合了基于检索的增强生成策略和少样本参数高效调优方法,以解决上述挑战。

一、背景

时间知识图谱(tKG)是一个包含多重关系的有向图,节点间的边带有时间戳,表示随时间变化的世界知识。tKG任务的主要目标是在给定过去历史事件的基础上预测未来的事件。例如,在预测给定时间点的某个实体关系时,传统方法通常通过嵌入模型将时间四元组嵌入到隐空间中,或者通过挖掘图结构中的时间逻辑规则来进行预测。然而,这些方法在面对数据集的微小修改、时间分割的变化时表现出不足。此外,它们往往忽略了tKG中事件的语义信息,只注重隐式的结构性表示,缺乏跨领域和跨时间的泛化能力。

在将大语言模型应用于tKG的生成式预测任务时,存在两个主要挑战:

(1)模态差异:tKG的数据结构复杂,包含大量的时间四元组,这些数据难以适应大语言模型能够处理的序列化自然语言表达。

(2)计算成本:LLMs在处理如此大规模的时间知识图谱数据时,微调所需的计算成本极高,尤其是在需要几个月时间的大规模训练任务中。

二、贡献

(1)开创了时间知识图谱生成式预测的新领域:GenTKG首次将指令调优的生成式大语言模型引入到时间知识图谱领域,并提出了一种新的检索增强生成框架,展示了LLMs在时间关系预测任务中的巨大潜力。

(2)低计算成本下的超越性能:通过极少样本的参数高效指令调优,GenTKG在计算资源极为有限的情况下实现了对传统方法的超越性能,展示了其在有限数据和计算资源下的优异表现。

(3)从数据学习到任务对齐的转变:GenTKG创新性地将传统的基于数据的学习转变为基于任务的对齐,通过指令调优,使大语言模型与时间知识图谱预测任务对齐,实现了更高效的任务执行。

(4)卓越的泛化能力:GenTKG展示了强大的跨数据集泛化能力和域内泛化能力,能够在不同数据集和时间切分下保持一致的高性能。

三、方法

为了解决上述挑战,本文提出了一种新的检索增强生成框架GenTKG。该框架结合了基于时间逻辑规则的检索策略(Temporal Logical Rule-based Retrieval, TLR)和少样本参数高效指令调优策略(Few-shot Parameter-Efficient Instruction Tuning, FIT),能够在计算资源有限的情况下,以极少的训练数据实现对tKG的生成式预测。

基于时间逻辑规则的检索策略(TLR):TLR策略通过挖掘tKG中的时间逻辑规则,构建了一个规则库。利用这些规则,可以检索出与给定查询在时间和逻辑上最相关的历史事实,并将这些历史事实按照时间顺序转换为自然语言,填充到为LLMs设计的特定提示模板中。尽管这些提示是以自然语言的形式出现,但它们隐含了tKG的结构信息,使得LLMs能够理解时间关系数据。

时间随机游走的过渡分布公式:为了检索与给定查询相关的历史事件,GenTKG使用了时间随机游走的概念,该过渡分布公式如下:

该公式确保检索出的历史事实在时间上更接近于当前查询,使得生成式预测更符合时间逻辑。

时间逻辑规则的定义:时间逻辑规则用于捕捉tKG中的时间模式,规则定义如下:

则的含义是,如果规则主体在时间 T1T_1T1 成立,那么在未来时间 T2T_2T2,规则头部也可能成立。

规则置信度的计算:规则置信度衡量时间逻辑规则的可靠性,其计算公式为:

置信度越高,表示规则在历史数据中成立的频率越高,因此被认为是更可靠的规则。

少样本参数高效指令调优策略(FIT):FIT策略通过指令调优,将LLMs与时间关系预测任务对齐,并将其重新定义为自回归生成任务。为了降低计算成本,本文采用了一种参数高效的微调方法(Low-Rank Adaptation, LoRA),仅需要极少的训练数据(少至16个样本)即可实现对tKG的高效调优。此外,FIT策略通过对任务指令、检索的历史事实输入以及生成的预测结果的精心设计,使LLMs能够在tKG任务上表现出色。

该图展示了用于微调语言模型的指令提示设计。提示分为三部分:任务指令(解释任务的定义),任务输入(包括检索到的历史事实),以及任务输出(预测的未来事件)。

四、实验结果

通过在多个tKG基准数据集上的广泛实验,GenTKG展示了其在计算资源有限的情况下,利用极少量的训练数据(如1024个样本)的超越性能。与传统方法相比,GenTKG在准确性上显著优于嵌入方法、基于规则的方法以及近期提出的基于上下文学习(ICL)的方法。此外,GenTKG还表现出了卓越的跨领域泛化能力,无需重新训练便能在多个未见过的数据集上取得优异的表现。

该图展示了GenTKG框架在跨领域泛化中的表现。在(a)小图中,GenTKG在ICEWS14数据集上训练,在GDELT数据集上评估,表现与在相同数据集上训练和评估的情况相当。(b)小图通过交叉检查不同训练和评估数据集,突出了GenTKG在不同领域中维持性能的能力。

该图分析了GenTKG在同一数据集内使用不同训练数据分区时的泛化能力。即使在使用有限的训练数据(如原始数据的5%)的情况下,GenTKG依然优于传统方法,展示了其强大的性能和稳定性。

在(a)小图中可以看到,TLR和FIT阶段都显著提升了GenTKG的性能,结合使用这两个阶段能够获得最佳结果。(b)小图显示了增加少样本训练样本数量可以提高性能,强调了该框架在有限数据学习中的效率。

五、总结

GenTKG通过结合时间逻辑规则的检索策略和少样本的参数高效指令调优,为大语言模型在时间知识图谱生成式预测中的应用开辟了新的前沿。该框架不仅在预测准确性和计算效率上表现出色,还展示了卓越的泛化能力,表明大语言模型在tKG领域中的巨大潜力和应用前景。


六、如何学习大模型?

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值