如果让我选择《Design of Analog CMOS Integrated Circuits》一书中哪章节内容最难?
我会选择Chp8.Feedback。
原因无它,很难实践,很多电路都无法简单的用四种基本反馈类型(V-V,V-I,I-I,I-V)去套用分析。没法实践,自然就无法加深对反馈这一无处不在的概念的理解。
接下来我以简单的Improved wilson current mirror为例,分享我的所学所想。欢迎大家一起讨论。

1.“Brutal force”

抛出三个问题:
(1)图中存在几个反馈环?
(2)Acl=iin/iout 是什么?
(3)输出阻抗rout是多少?
第一个问题我留到最后,先解决后两个。废话不多说,上小信号。



回过头来看第一个问题,存在几个反馈环?
比较明显的有两个loop,
1)M2&M3组成的source degeneration ;
2)M1&M4组成的common source;
这也是我当时在分析时给出的答案,然后潜意识带着只有两个loop去画信号流图和反馈框图,但怎么也解决不了一个最基本的问题——量纲不对。
明明根据小信号可以算出来,但基于反馈就做不到呢?
答案就藏在小信号图里(fig3),无法被忽视的ro3和iout也组成了一个小反馈环。
3)M3输出阻抗ro3.
所以Wilson CM总共存在三个反馈环。
2.Signal flow graph & Mason's gain rule
2.1 Signal flow graph
先介绍Signal flow graph的关键概念:
1)节点:是用来表示变量;节点可以把所有输入支路的信号叠加,并把总和信号传送到所有输出支路。
输入节点(源点):只有输出支路的节点,对应自变量;
输出节点(汇点):只有输入支路的节点,对应因变量。
2)支路:支路是连接两个节点的有向线段,信号只能沿着支路上的箭头方向通过。
通路:沿支路箭头方向而穿过各相连支路的途径叫通路;
前向通道:从源点到汇点的通路上,通过任何节点不多于一次,则该通路叫做前向通道;
前向通道增益:前向通道各支路增益的乘积;
回环:通路的终点就是通路的起点,并且与任何其它节点相交不多于一次;
回环增益:回环中各支路增益的乘积。
基于小信号模型,我们再画出Wilson CM的信号流图。


2.2 Mason's gain rule
面对这种存在多反馈环路的case,我们引入一个方法 ——Mason's gain rule ,来计算Acl。
�=[∑1�(��∗Δ�)]/Δ
相关定义:
n — 前向通道数;
pk — 从输入节点到输出节点之间第k条前向通道的增益;
Δ=1-ΣL1+ΣL2-ΣL3+... 系统特征式;
ΣL1—— 所有单独回环的增益之和;
ΣL2—— 所有两两互不接触回环的增益乘积之和;
ΣL3—— 所有三个互不接触回环的增益乘积之和;
Δk —— 第k个残余流图的特征式:把第k条前向通道(包括其中所有的节点和支路)去掉之后,在余下的信号流图(残余流图)上求得的Δ。
再按照以下三步:
1)判断有几条前向通道(forward path ),并计算出forward path gain,以及Δ
2)forward path gain/Δ,得到闭环传函Acl
3)基于Δ和开环量推算出闭环量,比如rout

和小信号计算结果完全一致。Mason行,我看行!(Big respect to S.J.Mason)
这里补充下开环输出阻抗为什么是ro3?
计算开环输出阻抗首先就要选择哪里断环(或者说阻止其他反馈环路影响),我认为只有让M3的Source,即Vs3 ac地,才可以完全开环。因此开环输出阻抗是ro3。
至此第一章提出的三个问题都已解答。
3.感想
想学好模拟,最好还得掌握一些自动控制理论的知识,信号与系统更不用说了。可能一些模拟碰到的Circuit/Architecture 级别问题,从一个更高维度,System去看就很简单了。

最后,新年快到了,祝大家龙年快乐,来年继续进步!
4.Reference
1.Analysis of the Modified MOS Wilson Current Mirror: A Pedagogical Exercise in Signal Flow
Graphs, Mason’s Gain Rule, and Driving-Point Impedance Techniques,Ronald G. Spencer
2.Design of Analog CMOS Integrated Circuits, Behzad Razavi
3.Understanding Wilson Current Mirror via the Negative Feedback Approach,Jirayuth Mahattanakul and Sitthichai Pookaiyaudom