2025年TOP 9大模型!

如果我们必须选择一个词来描述当今 AI 的快速发展,那可能是爆炸性的

本文的目标是让您(AI 爱好者和专业人士)了解该领域的当前趋势和重要创新。下面,我们重点介绍了我们认为目前在行业中掀起波澜的前 9大 LLMs大模型 。

1. GPT

图片

我们的列表从 OpenAI 的生成式预训练转换器 (GPT) 模型开始,这些模型在每个新版本中都不断超越其以前的功能。最新的 GPT-4.5 于 2025 年 2 月发布,提供增强的自然语言处理能力和网络搜索集成,而其前身 GPT-4o 和 GPT-4o mini 在文本、语音和视觉的多模态处理方面表现出色。

虽然 GPT-4.5 在自然语言处理、减少幻觉和更自然的交互方面表现出显着改进,但生态系统中的其他模型有不同的用途:像 o3-mini 和 o3-mini-high 这样的较小模型在数学、科学和逻辑推理方面表现出卓越的性能,GPT-4o(“omni”)及其迷你变体专注于多模态能力,而 o1 系列强调反思推理, 经典的 GPT-4 仍然是可靠的基础。

需要注意的是,GPT 是一种具有机密训练数据和参数的专有模型,需要商业许可证或订阅——目前通过 ChatGPT Pro 的价格为每月 200 美元——使其最适合寻求出色的对话对话和实时互动的企业没有预算限制。

对于由于预算限制或长期集成的不确定性而想在完全投入使用之前尝试市场上专有模型的公司,Shakudo 提供了一个引人注目的选择。我们的平台目前提供多种高级LLMs选择,具有简化的部署和可扩展性。通过简单的订阅,您可以在进行大量投资之前访问和评估 GPT 等专有模型的价值。

2. 深度探索

图片

Deepseek-R1 基准测试。来源: deepseek.com

凭借其最新的 R1 模型,中国 AI 公司 DeepSeek 再次为 AI 社区的创新树立了新的标杆。截至 1 月 24 日,DeepSeek-R1 模型在 Chatbot Arena 上排名第四,在最佳开源 LM 中排名第一。

DeepSeek-R1 是一个 671B 参数专家混合 (MoE) 模型,每个标记有 37B 个激活参数,通过大规模强化学习进行训练,非常注重推理能力。该模型擅长理解和处理长篇内容,并在数学和代码生成等复杂任务中表现出卓越的性能。该模型的成本效益大约是 OpenAI-o1 的 30 倍,速度是 OpenAI-o1 的 5 倍,以极低的成本提供突破性的性能。此外,它在需要复杂模式识别的任务中表现出非凡的精度,例如基因组数据分析、医学成像和大规模科学模拟。

DeepSeek-R1 的功能在与 PII 和财务记录等专有企业数据的集成方面具有变革性。利用检索增强生成 (RAG),企业可以将模型连接到其内部数据源,以实现高度个性化、上下文感知的交互,同时保持严格的安全性和合规性标准。借助 Shakudo,您可以通过自动化设置、部署和管理流程来简化 DeepSeek 等高级 AI 模型的部署和集成。这样,企业就无需投资和维护大量的计算基础设施。通过在现有基础设施中运行,该平台可确保无缝集成、增强安全性和最佳性能,而无需大量的内部资源或专业知识。

3. Qwen

Alibaba QwQ: Better than OpenAI-o1 for reasoning? | by Mehul Gupta | Data  Science in your pocket | Nov, 2024 | Medium

阿里巴巴一直在积极推进其语言模型阵容,Qwen2.5-Max 于 2025 年初发布,随后于 3 月发布开创性的 QwQ-32B。QwQ 模型因其数学推理和编码能力而特别突出,与 DeepSeek R1 等大型模型有效竞争,同时需要的计算资源明显减少。

Qwen2.5-Max 在超过 20 万亿个代币上进行了预训练,并利用 Mixture-of-Experts 架构来提高效率。在保持跨基准测试的有竞争力的性能的同时,其设计侧重于可访问性和实际部署。该模型具有 32K 令牌上下文窗口,使其适用于各种企业应用程序。

不要陷入LLM基础设施的泥潭。Shakudo 的作系统可以自动执行这一切,因此您可以专注于结果。

见LLMs尺堂

对于寻求全面语言模型的企业和开发人员,整个 Qwen 系列涵盖 18 亿到 720 亿个参数。所有模型均在 Apache 2.0 许可下开源,并通过多个平台提供,包括阿里云 API、Hugging Face 和 ModelScope。该系列已获得极大的关注,被消费电子、游戏和其他领域的 90,000 多家企业采用。

4. GROK

xAI launches Grok 3 for X's Premium+ subscribers and introduces new  SuperGrok subscription | AlternativeTo

Grok AI 是由埃隆马斯克的 AI 公司 xAI 开发的生成式人工智能聊天机器人。Grok 与社交媒体平台 X(前身为 Twitter)集成,为用户提供实时信息访问和充满机智和幽默感的对话体验。它旨在处理范围广泛的任务,包括回答问题、解决问题、集思广益以及从文本提示生成图像。

最新版本 Grok 3 于 2025 年 2 月推出。该模型使用 xAI 的 Colossus 超级计算机的计算能力,比其前身 Grok 2 高出 10 倍。Grok 3 引入了高级推理功能,使其能够将复杂问题分解为可管理的步骤并验证其解决方案。它还具有“思考”和“大脑”模式,以增强问题解决能力,以及新的“DeepSearch”功能,可扫描互联网和 X 以提供详细的摘要以响应用户查询。

由于该模型在实时数据处理、高级推理和深度互联网搜索方面表现出色,因此我们会向需要快速新闻分析、编码协助和动态客户支持的公司推荐它。以研究为重点的实体可以从其实时监控趋势和分析新问题的能力中受益。

5. META

图片

Meta 仍然以其最先进的 LlaMa 模型处于领先地位。该公司于 2024 年 12 月发布了最新的 LlaMA 3.3 模型,该模型具有多模态功能,可以处理文本和图像以进行深入分析和生成响应,例如解释图表、地图或翻译图像中识别的文本。

LlaMA 3.3 对以前的模型进行了改进,具有长达 128,000 个令牌的更长上下文窗口和优化的 transformer 架构。该模型具有 700 亿个参数,在多语言对话、推理和编码等领域优于开源和专有替代方案。

与 ChatGPT 模型不同,LlaMA 3 是开源的,让用户可以根据其基础设施的特定要求、安全偏好或定制需求,灵活地访问和部署他们的云。我们建议寻求高级内容生成和语言理解的企业(例如客户服务、教育、营销和消费者市场的企业)使用此模型。这些模型的开放性还允许您更好地控制模型的性能、调整和与现有工作流的集成。

6. Claude

图片

Anthropic 推出了其迄今为止最先进的 AI 模型 Claude 3.7 Sonnet,该模型集成了多种推理方法,为用户提供快速响应或深入、逐步解决问题的灵活性。该模型的突出特点是其“扩展思维模式”,利用一种称为刻意推理或自我反思循环的技术,允许模型迭代改进其思维过程,评估多个推理路径,并在最终确定输出之前优化准确性。

Claude 3.7 Sonnet 在编码和前端 Web 开发方面表现出特别强大的改进,从而能够更有效地解决软件工程任务中的问题。它的推理能力通过“扩展思维模式”得到增强,该模式允许深入反思和提炼,从而产生更准确和可靠的输出。这些优势,再加上摘要、内容生成和对话式 AI 方面的功能,使其成为在客户支持、知识管理和业务自动化方面寻求可靠 AI 的组织的绝佳选择。‍

7. Mistral 

图片

Mistral 的最新模型 Mistral Small 3 是一种延迟优化模型,于 1 月底在 Apache 2.0 许可下发布。这个包含 240 亿个参数的模型专为低延迟、高效率的任务而设计。它每秒处理大约 150 个令牌,比相同硬件上的 Llama 3.3 70B 快三倍多。

这种新模型非常适合需要快速、准确响应且低延迟的应用程序,例如虚拟助手、实时数据处理以及设备上的命令和控制。其较小的尺寸允许在计算资源有限的设备上进行部署。

Mistral Small 3 目前在 Apache 2.0 许可下是开源的。这意味着,只要您遵守许可条款,就可以自由地访问和将模型用于自己的应用程序。由于它设计为易于部署,包括在资源有限的硬件上,例如单个 GPU 甚至具有 32GB RAM 的 MacBook,因此我们建议希望实施低延迟 AI 解决方案而无需大量硬件基础设施的早期企业使用它。

8. Gemini

图片

Gemini 是由 Google 开发的一系列闭源LLM模型。最新型号 Gemini 2.0 Flash 的运行速度是 Gemini 1.5 Pro 的两倍,在速度、推理和多模态处理能力方面都有了实质性的改进。

话虽如此,Gemini 仍然是一个专有模型;如果您的公司定期处理敏感或机密数据,出于安全原因,您可能会担心将其发送到外部服务器。为了解决这一问题,我们建议您仔细检查供应商合规性法规,以确保满足数据隐私和安全标准,例如遵守 GDPR、HIPAA 或其他相关数据保护法律。

如果您正在寻找一种功能几乎与 Gemini 一样好的开源替代方案,Google 最新的 Gemma 模型 Gemma 2 提供了三种模型,分别提供 20 亿、90 亿和 270 亿个参数,上下文窗口为 8,200。对于寻求相当经济选择的企业来说,这是最准确的解释和理解消息的最佳选择。

9. command R

图片

Command R 是 Cohere 开发的一系列可扩展模型,其目标是平衡高性能和高精度,就像 Claude 一样。Command R 和 Command R+ 模型都提供了专门针对检索增强生成 (RAG) 优化的 API。这意味着这些模型可以将大规模语言生成与实时信息检索技术相结合,以获得更具上下文感知能力的输出。

目前,Command R+ 模型拥有 1040 亿个参数,并提供行业领先的 128,000 个令牌上下文窗口,用于增强的长格式处理和多轮对话功能。

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值