Yolov8优化: 多分支卷积模块RFB,扩大感受野提升小目标检测精度

本文介绍了RFB-Net,一种用于目标检测的多分支卷积模块,通过扩大感受野和调整卷积结构提高检测精度。RFB模块结合了不同尺度的卷积和虫洞卷积,类似于Inception结构但更注重感受野的控制。在Yolov8中引入RFB,通过修改`modules.py`、`tasks.py`和配置文件`yolov8_BasicRFB.yaml`,实现了性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值