YOLOv5、YOLOv8改进:空间金字塔池化 SPPF改为 SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC

本文介绍了YOLOv5和YOLOv8的改进,包括结合ASPP的空间金字塔池化(SPP)方法。详细阐述了空洞卷积、空洞空间卷积池化金字塔,以及SimSPPF、RFB模块、SPPCSPC和SPPFCSPC等技术,旨在提升目标检测性能和优化计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.SPP

 2.sppf yolov5作者基于spp提出

3.YOLOv5/YOLOv8改进之结合​​ASPP

3.1空洞卷积(Atrous Convolution)

3.2空洞空间卷积池化金字塔

2.配置yolo.py文件

3.配置yolov5/yolov8_​​ASPP.yaml文件

4.1SimSPPF

5.RFB模块(Receptive Field Block)

6.SPPCSPC

7.SPPFCSPC


1.SPP

空间金字塔池化(Spatial Pyramid Pooling,SPP)是一种用于解决输入尺寸不同的图像在深度学习中常见的问题的技术。它通过将不同尺寸的感受野划分成不同的层级,并对每个层级内的特征进行池化操作,从而能够对任意大小的输入图像进行固定长度的特征表示。

SPP最初由He et al.在2014年的论文《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》中提出,并被成功应用于目标检测和图像分类任务中。

SPP的主要步骤:

  1. 输入特征图:给定一张输入图像,首先经过卷积神经网络(如CNN)提取特征,得到一个特征图。

  2. 划分网格:SPP将特征图分成多个不同尺寸的网格,每个网格对应一个特定大小的感受野。这些感受野可以是不同比例和不同大小的矩形或正方形。

  3. 池化操作:对于每个网格,应用池化操作(如最大池化)来提取该网格内的特征。不同尺寸的感受野会产生不同大小的区域特征。

  4. 特征拼接:将所有池化后的特征按照顺序拼接在一起,形成一个固定长度的特征向量。

引用中提到了SPPFCSPC模块是作者在借鉴SPPF的思想并对SPPCC进行优化后得到的模块。SPPFCSPC在保持感受野不变的情况下获得了速度提升。作者将这个模块展示给了v7作者,并没有得到否定。你可以查看第4个问题的讨论来获得更详细的回答。 根据引用中的信息,SPPFCSPC模块的模型参数量和计算量与SPP模块相同,都是1366354921.7。这意味着SPPFCSPC模块在参数和计算量方面与SPP模块没有明显的区别。 根据引用中提到的yolov5sppfcspc模块,我们可以推断,这个模块很可能是yolov5模型中使用的一种改进方式之一。然而,具体关于yolov5 sppfcspc模块的详细信息需要进一步的资料才能给出准确的答案。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC](https://blog.csdn.net/weixin_43694096/article/details/126354660)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [yolov5官方训练模型PT](https://download.csdn.net/download/qq_43788669/85252268)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值