目录
3.配置yolov5/yolov8_ASPP.yaml文件
5.RFB模块(Receptive Field Block)
1.SPP
空间金字塔池化(Spatial Pyramid Pooling,SPP)是一种用于解决输入尺寸不同的图像在深度学习中常见的问题的技术。它通过将不同尺寸的感受野划分成不同的层级,并对每个层级内的特征进行池化操作,从而能够对任意大小的输入图像进行固定长度的特征表示。
SPP最初由He et al.在2014年的论文《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》中提出,并被成功应用于目标检测和图像分类任务中。
SPP的主要步骤:
-
输入特征图:给定一张输入图像,首先经过卷积神经网络(如CNN)提取特征,得到一个特征图。
-
划分网格:SPP将特征图分成多个不同尺寸的网格,每个网格对应一个特定大小的感受野。这些感受野可以是不同比例和不同大小的矩形或正方形。
-
池化操作:对于每个网格,应用池化操作(如最大池化)来提取该网格内的特征。不同尺寸的感受野会产生不同大小的区域特征。
-
特征拼接:将所有池化后的特征按照顺序拼接在一起,形成一个固定长度的特征向量。