Yolov8小目标检测(7):BiFPN高效双向跨尺度连接和加权特征融合,助力小目标检测

本文介绍了BiFPN在红外弱小目标检测中的优势,通过引入BiFPN,map@0.5的性能从0.755提升至0.766。详细讲解了BiFPN的结构与工作原理,以及在Yolov8中的实现步骤,包括数据集、模型配置和结果分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡💡💡本文改进:BiFPN高效双向跨尺度连接和加权特征融合 ,有效提升小目标难检测问题;

    BiFPN |   亲测在红外弱小目标检测涨点明显,map@0.5 从0.755提升至0.766

💡💡💡Yolo小目标检测,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,带你轻松实现小目标检测涨点

💡💡💡重点:通过本专栏的阅读,后续你可以结合自己的小目标检测数据集,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现小目标涨点和创新!!!

专栏介绍:

✨✨✨

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值