💡💡💡本文独家改进:轻量化改进之高效移动应用的卷积加性自注意Vision Transformer,构建了一个新颖且高效实现方式——卷积加性相似度函数,并提出了一种名为卷积加性标记混合器(CATM) 的简化方法来降低计算开销
💡💡💡性能比较:计算量参数量均有一定程度降低, 8.4 GFLOPs降低至 8.0 GFLOPs
YOLOv10n summary: 385 layers, 2709380 parameters, 2709364 gradients, 8.4 GFLOPs
YOLOv10n-C2f_AdditiveBlock summary: 745 layers, 2632162 parameters, 2632146 gradients, 8.0 GFLOPs
💡💡💡如何创新到YOLOv10,结构图如下: