目录
扩散模型(Diffusion Model)的核心优势
扩散模型是一类基于概率扩散过程的生成模型,近年来在生成任务中(如图像生成)表现出非常强大的能力。以下是扩散模型的几大核心优势:
1. 生成质量高
扩散模型生成的样本质量非常高,尤其是在图像生成任务中,与 GAN(生成对抗网络)和 VAE(变分自编码器)等生成模型相比,扩散模型在生成的图像细节、分辨率和多样性上往往更优。
- 由于训练中直接优化了生成过程的对数似然,扩散模型避免了 GAN 中常见的模式崩塌问题(Mode Collapse)。
2. 稳定的训练过程
与 GAN 的对抗训练不同,扩散模型的训练是基于最大似然估计的,无需设计复杂的生成器和判别器结构,也不需要解决 GAN 中常见的训练不稳定问题。
- 训练过程仅涉及噪声的逐步添加和去除,优化目标明确,收敛性更强。
3. 灵活的生成过程
扩散模型的生成过程是逐步去噪的,可以通过调整去噪步数来控制生成的质量和效率。
生成过程可以灵活地结合条件信息(如文本、标签等),实现条件生成任务(例如 DALL·E 2 和 Stable Diffusion)。
4. 理论基础扎实
扩散模型基于马尔可夫链和概率论构建,具有清晰的数学理论支撑。
- 它通过逐步逼近数据分布,避免了直接建模复杂数据分布的难题,生成过程直观且可解释性强。
<