Qwen3,超强悍,免费开源

| 前言

今天AI界的重磅新闻莫过于阿里巴巴发布了超强悍的Qwen3全家桶,而且超级大气的全面开源,瞬间点燃了整个AI圈。

从技术层面来看,Qwen3是全球首个开源的混合推理模型,创新架构融合多种技术优势,支持119种语言和方言,还兼容MCP协议,满足全球用户需求。其性能也十分出色,30B MoE模型仅用相当于32B Dense模型10%的激活参数,就取得更好效果,且独特的双重思考模式,使其处理任务游刃有余。在开源策略上,阿里巴巴完全开源Qwen3,体现了对自身技术的信心和对未来生态建设的战略投资。全球开发者可免费下载并商业使用,大大降低技术门槛和成本。Qwen3构建的强大生态系统,让开发者能通过多个平台获取模型,并利用多种工具进行部署和开发,为技术创新提供广阔空间。

在行业竞争中,Qwen3影响力强大,直接挑战DeepSeek等顶级对手,对国际领先模型也构成威胁,提升了中国AI技术的国际影响力,树立了新的技术标杆,推动行业发展。而在应用方面,Qwen3开源模式吸引众多合作,应用场景不断拓展,功能丰富,推动AI技术在各行各业的商业化落地与普及。 

| 试用体验

可能很多朋友还不知道在哪里能够开箱即用的体验到最新最强悍的Qwen3全家桶吧?

就是这里哦:https://chat.qwen.ai/

这个地址是阿里千问最新的网站,是继老版本通义之后的全新阿里千问大模型直接使用的地方。前段时间新推出的Qwen2.5系列在这里都能使用。现在又华丽丽的增加了Qwen3系列大模型,可谓是最强悍的AI工具了。

我试着让Qwen3总结了一下PDCA方法论的要点。

非常快,模型直接选择了无需思考的模式,总结的结果要点明确、层次清晰,还有对应的emoji美化了整个总结的排版。相当的棒。

一如既往的总结很完善,而且还增加了应用场景示例等内容,可谓是面面俱到了。

接着,我要考验一下这个地表最强模型的编程能力了哈哈。我让他把这个知识总结,用HTML做成卡片。

编程速度超级快,很快就形成了可视化的卡片,只是样式还是很普通,但有一个亮点就是主动在询问是否需要进一步处理这张卡片,包括导出为PDF。

我进一步让它调整为炫酷科技风。之前的模型,在科技风的理解和调整上总是不尽人意,看看这次Qwen3的表现吧。

很好,它自己主动想到了渐变、发光、霓虹、微动效等炫酷的视觉效果方法。

最后出来的结果,把我惊艳到了!这张卡片简直太科技范儿了,超越了大部分UI设计的效果。

| Qwen3全家桶

这次阿里巴巴发布的Qwen3 系列模型全家桶超级丰富,一共有以下参数尺寸的模型:

  • MoE 模型

    • Qwen3-235B-A22B:2350 亿总参数,220 亿激活参数。

    • Qwen3-30B-A3B:300 亿总参数,30 亿激活参数。

  • Dense 模型

    • Qwen3-32B:320 亿参数。

    • Qwen3-14B:140 亿参数。

    • Qwen3-8B:80 亿参数。

    • Qwen3-4B:40 亿参数。

    • Qwen3-1.7B:17 亿参数。

    • Qwen3-0.6B:6 亿参数。

| 啥是Dense模型?

Dense 模型是一种比较传统的语言模型结构,它的意思是模型中的参数是“密集”的。你可以把它想象成一个巨大的、紧密的网络,所有的参数都紧密地连接在一起,共同工作来处理输入的信息。

工作方式:当输入一个问题或者一段文字时,Dense 模型会用它所有的参数一起参与计算,就像一个团队里的所有人都在同时工作一样。这种模型的特点是比较“全面”,因为所有的参数都在努力理解输入的内容,所以它在处理各种任务时都能有一定的表现。

优点:结构相对简单,计算过程比较直接。就像一个紧密协作的团队,每个人(参数)都在做贡献,所以整体效果比较稳定。

缺点:因为所有的参数都参与计算,所以计算量会比较大,尤其是当模型参数很多的时候,运行起来会比较慢,需要的计算资源也比较多。

| 啥是MoE模型?

MoE 模型又叫做Mixture of Experts。是一种更复杂的模型结构,它的意思是“专家混合”。这个模型的核心思想是把参数分成很多个“专家”,每个专家只负责处理一部分特定的任务或者数据。

工作方式:当输入一个问题时,MoE 模型会先判断这个问题属于哪一类,然后只让相关的“专家”来处理。比如,如果问题是关于数学的,就让数学专家来处理;如果是关于语言的,就让语言专家来处理。这样,每次只需要激活一部分参数(专家)来工作,而不是所有的参数都参与计算。

优点:这种方式可以大大减少计算量,因为每次只需要用到一小部分参数。而且,每个专家可以更专注于自己擅长的领域,所以模型在某些特定任务上的表现可能会更好。就像一个公司里有不同部门的专家,每个人只做自己最擅长的事情,效率更高。

缺点:虽然计算量减少了,但模型的结构更复杂了。需要一个“路由器”来判断问题属于哪一类,并且要把不同的专家的输出整合起来,这增加了模型的复杂性和训练难度。

    | Qwen3亮点:“多种思考模式”

    Qwen3本次推出了“多种思考模式”,就像我们人类在面对问题时,有时候会深思熟虑,有时候会快速反应一样。而且是模型内部自己根据问题的情况自行选择对应的工作方式。这个就跟我们人类大脑面对不同问题会开启不同工作模式很类似了。

    大家还记得DeepSeek官网上,有一个“深度思考”的开关,对吧?按下这个开关,就会使用DeepSeek-R1推理模型,先思考后回答;反之则会使用DeepSeek-V3,直接回答。用户通过这个按钮来选择“深思熟虑”和“快速反应”。但是很多用户不懂这个按钮的作用,经常用错。

    Qwen3 这个智能模型就彻底解决了这个问题,它可以根据问题的难度,自动选择用哪种模式。如果问题是复杂的,它就用“思考模式”;如果问题是简单的,它就用“非思考模式”。

    “深思熟虑”的大脑

    这种模式下,Qwen3 就像一个很认真、很谨慎的人。它会把问题分成很多个小步骤,一步一步地分析,最后才给出答案。

    比如你问它一个很复杂的数学题,或者是一个需要逻辑推理的问题,它就会用这种“思考模式”。它会慢慢地分析,确保给出的答案是准确的。

    “快速反应”的大脑

    这种模式下,Qwen3 就像一个反应很快的人。你问它问题,它几乎立刻就能回答,就像我们回答一些很简单的问题一样,不需要思考太久。

    比如你问它“今天天气怎么样?”或者“草莓有几个r?”这种简单的问题,它就会用“非思考模式”快速回答。

    根据问题智能选择模式

    Qwen3 还可以随时切换模式。比如你先问了一个复杂的问题,它用“思考模式”回答了;然后你又问了一个简单的问题,它就会立刻切换到“非思考模式”,快速回答。

    这种设计就像一个很聪明的助手,它知道什么时候需要深思熟虑,什么时候需要快速反应。这样既能保证答案的质量,又能节省时间,让你用起来很方便。

    比如,你问它:“今天天气怎么样?”它会立刻回答:“今天天气晴朗,适合出门。”(这就是“非思考模式”)。

    然后你又问它:“帮我解决一个复杂的数学题,题目是……”它就会开始慢慢分析,一步一步地给你解释解题过程,最后给出答案(这就是“思考模式”)。

    | 怎么训练出来的?

    这么强大的模型,是怎么训练出来的呢?

    Qwen3采用了超大规模的数据集,使用了 36 万亿个 token 的数据进行预训练,比上一代 Qwen2.5(18 万亿个 token)多了一倍。这就像是让模型读了更多的书、看了更多的文章,让它变得更“博学”。

    多语言覆盖:这些数据涵盖了 119 种语言和方言,让 Qwen3 能够理解世界各地的语言,无论是英语、中文,还是小众语言如巴斯克语、海地语等。这就像是一个精通多国语言的“学霸”。

    而且,数据来源丰富多样,包括

    • 从网络上“学习”:模型从互联网上收集了大量文本数据,就像从网上冲浪一样,吸收各种信息。

    • 从 PDF 文档中“读书”:使用 Qwen2.5-VL 从 PDF 文档中提取文本,就像从电子书里学习知识一样。而且,还用 Qwen2.5 改进提取内容的质量,确保读到的内容是准确的。

    • “合成”更多知识:利用 Qwen2.5-Math 和 Qwen2.5-Coder 生成合成数据,包括教科书、问答对和代码片段。这就像是给模型“定制”了一些专门的学习材料,让它在数学和编程方面变得更厉害。

    不仅如此,Qwen3是采用了分阶段的精心训练调教出来的。

    第一阶段(S1):模型在 30 万亿个 token上进行预训练,上下文长度为 4K token,主要学习基础的语言技能和通用知识。这就像是给模型打下坚实的基础,让它先学会“说话”和“理解”。

    第二阶段(S2):增加 STEM(科学、技术、工程、数学)、编程和推理任务的数据,再在额外的 5 万亿个 token上进行预训练。这就像是让模型在特定领域“深造”,提升它解决复杂问题的能力。

    第三阶段(S3):使用高质量的长上下文数据,将上下文长度扩展到 32K token。这就像是让模型学会处理更长、更复杂的文本,比如长篇文章或者复杂的对话。

    我们可以用一个比喻来总结Qwen3是如何练成的。如果把 Qwen3 的预训练比作培养一个学生,那么它就像是这样一个学生:读了超多的书(36 万亿个 token 的数据),学习了多种语言(119 种语言和方言),不仅学了基础知识,还专攻了特定领域(STEM、编程等),学会了处理复杂的文章和对话(长上下文训练),而且学习效率更高(架构改进和成本降低)。这样一来,Qwen3 就像一个既博学又高效的“学霸”,能够更好地帮助我们解决问题!

    | 总结

    今天给大家介绍了Qwen3的方方面面,从它的发布瞬间点燃AI圈,到技术层面的重大突破,作为全球首个开源混合推理模型,在语言支持、性能表现以及独特的双重思考模式上都十分亮眼。其开源策略不仅展现了阿里巴巴对自身技术的信心,更构建起强大的生态系统,为全球开发者提供了广阔的创新空间。

    在行业竞争中,Qwen3凭借卓越的性能和丰富的功能,对国内外的顶尖模型发起挑战,提升了中国AI技术的国际影响力,成为新的技术标杆,推动整个行业向前发展。应用领域,Qwen3的开源模式吸引了大量合作,应用场景不断拓展,从简单的日常问答到复杂的编程任务、知识总结等,功能丰富多样,有力地推动了AI技术的商业化落地与普及。

    通过试用体验,我们也切实感受到了Qwen3在处理任务时的高效与智能,无论是总结方法论,还是进行编程任务,都能出色完成,甚至在一些方面超越了同类产品。而且Qwen3全家桶模型丰富,涵盖了多种参数尺寸的MoE模型和Dense模型,满足不同用户的需求。

    此外,我们还深入了解了Dense模型和MoE模型的工作方式、优缺点,以及Qwen3独有的“多种思考模式”,它能根据问题的复杂程度智能切换模式,既保证了答案质量,又提高了效率。

    最后,Qwen3强大能力的背后,是超大规模的数据集、丰富多样的数据来源以及分阶段精心的训练过程。就像培养一个优秀的学生一样,Qwen3经过大量的学习和训练,成为了一个既博学又高效的“学霸”。

    相信随着Qwen3的不断发展和完善,它将在AI领域发挥更大的作用,为我们的生活和工作带来更多的便利和创新,也期待未来能看到它在更多领域的精彩表现,引领AI技术迈向新的高度。 

     

     一、大模型风口已至:月薪30K+的AI岗正在批量诞生

    2025年大模型应用呈现爆发式增长,根据工信部最新数据:

    国内大模型相关岗位缺口达47万

    初级工程师平均薪资28K(数据来源:BOSS直聘报告)

    70%企业存在"能用模型不会调优"的痛点

    真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

    二、如何学习大模型 AI ?


    🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

    由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

    但是具体到个人,只能说是:

    “最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

    这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

    我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

    我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

    1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
    2️⃣ RAG系统:让大模型精准输出行业知识
    3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

    📦熬了三个大夜整理的《AI进化工具包》送你:
    ✔️ 大厂内部LLM落地手册(含58个真实案例)
    ✔️ 提示词设计模板库(覆盖12大应用场景)
    ✔️ 私藏学习路径图(0基础到项目实战仅需90天)

     

    第一阶段(10天):初阶应用

    该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

    *   大模型 AI 能干什么?
    *   大模型是怎样获得「智能」的?
    *   用好 AI 的核心心法
    *   大模型应用业务架构
    *   大模型应用技术架构
    *   代码示例:向 GPT-3.5 灌入新知识
    *   提示工程的意义和核心思想
    *   Prompt 典型构成
    *   指令调优方法论
    *   思维链和思维树
    *   Prompt 攻击和防范
    *   …

    第二阶段(30天):高阶应用

    该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

    *   为什么要做 RAG
    *   搭建一个简单的 ChatPDF
    *   检索的基础概念
    *   什么是向量表示(Embeddings)
    *   向量数据库与向量检索
    *   基于向量检索的 RAG
    *   搭建 RAG 系统的扩展知识
    *   混合检索与 RAG-Fusion 简介
    *   向量模型本地部署
    *   …

    第三阶段(30天):模型训练

    恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

    到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

    *   为什么要做 RAG
    *   什么是模型
    *   什么是模型训练
    *   求解器 & 损失函数简介
    *   小实验2:手写一个简单的神经网络并训练它
    *   什么是训练/预训练/微调/轻量化微调
    *   Transformer结构简介
    *   轻量化微调
    *   实验数据集的构建
    *   …

    第四阶段(20天):商业闭环

    对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

    *   硬件选型
    *   带你了解全球大模型
    *   使用国产大模型服务
    *   搭建 OpenAI 代理
    *   热身:基于阿里云 PAI 部署 Stable Diffusion
    *   在本地计算机运行大模型
    *   大模型的私有化部署
    *   基于 vLLM 部署大模型
    *   案例:如何优雅地在阿里云私有部署开源大模型
    *   部署一套开源 LLM 项目
    *   内容安全
    *   互联网信息服务算法备案
    *   …

    学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

    如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

    这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

     

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    程序员辣条

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值