引言
血细胞检测与计数是医学诊断和病理学研究中的重要任务。传统的血细胞检测方法通常依赖于显微镜和人工计数,这种方法不仅耗时耗力,而且容易受到主观因素的影响。近年来,深度学习技术的快速发展为医学图像分析领域带来了革命性的变化,尤其是YOLO(You Only Look Once)系列算法,能够在保持较高检测精度的同时实现实时检测。
本文将详细介绍如何使用YOLOv5构建一个血细胞智能检测与计数系统,并提供完整的代码实现。我们将从数据集的准备、模型的训练、UI界面的设计以及最终的部署进行详细讲解。
1. YOLOv5简介
YOLOv5是YOLO系列的最新版本之一,由Ultralytics公司开发。相比于YOLOv4,YOLOv5在速度和精度上都有所提升,并且更加易于使用。YOLOv5支持多种模型尺寸(如YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x),用户可以根据自己的需求选择合适的模型。
YOLOv5的主要特点:
- 高效性:YOLOv5能够在保持较高检测精度的同时,实现实时检测。
- 易用性:YOLOv5提供了简洁的API和丰富的文档,用户可以快速上手。