大模型就业前景不要问别人了,这一篇给你详细解答,收藏我这一篇就够了

大模型技术作为人工智能领域的一项重要成果,正在以前所未有的速度推动着行业的变革与发展。随着算法、算力和数据量的不断提升,大模型在处理复杂任务和提供智能化解决方案方面的潜力得到了极大的释放。这不仅改变了现有的业务模式和技术栈,也为就业市场带来了新的机遇与挑战。

大模型技术的发展前景
大模型技术的应用领域不断扩大,从最初的自然语言处理和计算机视觉,已经扩展到了医疗、金融、智能制造等多个行业。这些行业通常需要处理大量的数据,并且面临复杂的问题,大模型的出现为这些问题提供了更为高效和精确的解决方案。此外,随着技术的不断优化和硬件设施的进步,大模型的训练和应用变得更加经济可行,这进一步促进了其在各个领域的普及。

就业市场的变革
市场需求持续扩张
在全球数字化转型的背景下,大数据已经成为驱动各行各业发展的核心要素。随着大数据市场规模的不断扩大,对于数据分析师、数据科学家、数据工程师等专业人才的需求也呈现出爆发式的增长。这些职位不再局限于传统的信息技术领域,而是广泛分布于金融、医疗、教育、零售等多个行业,形成了丰富多元的职业发展路径。

AI大模型带来的机遇与挑战
近年来,以GPT系列、BERT等为代表的人工智能大模型快速发展,在处理和分析大规模数据方面展现出了卓越的能力。它们能够帮助大数据从业者高效地完成数据清洗、挖掘和预测等任务,极大地提高了工作效率。但与此同时,这也对从业人员提出了更高的要求,包括更强的数据理解能力、算法知识以及跨领域的综合应用技能。

新型职位的涌现
随着AI大模型的广泛应用,一系列新的职位也应运而生,比如AI训练师、模型优化专家等。这些职位不仅要求掌握传统的数据分析技术,还需要能够熟练运用AI大模型来解决复杂问题。因此,对于想要进入这一领域的求职者来说,持续学习和跟进最新的技术动态变得尤为重要。

教育培训与政策导向
为了应对AI大模型带来的变化,教育培训机构和相关政策正在积极调整,增设相关的课程体系,鼓励产学研结合,为大数据人才提供转型升级的平台。同时,政府也在积极推动大数据产业发展,为大数据从业者创造了良好的外部环境。

2024年秋招大模型相关岗位的现状
在2024年的秋季招聘中,大模型相关岗位的前景非常明朗。根据CSDN技术社区的信息显示,市场上对于有大模型方向论文的硕士和博士生需求很大,然而这类人才却相对较少。同样,有实际大模型训练经验的人才也非常稀缺,特别是那些参与过65亿参数以上大模型全量训练的人才更是难得。此外,模型评测和强化学习方面的经验也是市场上的稀缺资源。

结论
综上所述,大模型技术的发展前景十分广阔,其在就业市场上的影响力也在逐年增加。无论是对于现有行业内的从业者还是希望转型进入该领域的新人来说,这都是一个充满机遇的时代。随着技术的不断演进和市场需求的变化,掌握大模型相关技能的人才将会越来越受到企业的青睐。对于那些有兴趣投身于这一领域的人来说,现在正是一个绝佳的时机去学习和准备,以便抓住即将到来的机会。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### 回答1: 好的,这是一篇计算机技术分享帖子的示例: 《使用计算机视觉技术进行图像分类》 在这篇帖子中,我将介绍如何使用计算机视觉技术来对图像进行分类。计算机视觉是一门涉及机器学习、深度学习和图像处理的技术,可以让计算机“看”到并理解图像中的内容。 首先,我们会介绍图像分类的基本概念,包括什么是图像分类,它的应用场景有哪些,以及如何使用机器学习算法进行图像分类。 然后,我们将深入介绍几种常见的图像分类模型,包括卷积神经网络 (CNN)、循环神经网络 (RNN) 和自编码器 (AE)。我们还会介绍如何使用这些模型进行训练和预测,以及如何使用数据增强技术来提高模型的泛化能力。 最后,我们会分享一些实际案例,展示如何使用计算机视觉技术解决各种实际题,包括图像分类、目标检测、语音识别等。 通过学习本帖子,你将能了解 ### 回答2: 当然!下面是一篇关于计算机技术的分享帖子: 标题:探索人工智能在医疗技术中的应用 大家好!今天我想和大家分享一下人工智能在医疗技术中的应用。随着技术的不断发展,人工智能在医疗领域发挥着越来越重要的作用,为医生提供更准确、高效的医疗诊断和治疗方案。下面,我将为大家介绍几个目前在医疗技术中广泛应用的人工智能技术。 首先,人工智能在医学图像诊断中发挥着关键作用。通过深度学习算法,可以对医学图像进行自动分析和识别,帮助医生更准确地诊断疾病。例如,针对早期癌症的检测,人工智能可以提供更准确的筛查结果,帮助尽早发现病变,从而提高治愈率。 其次,人工智能在病历数据分析中的应用也越来越受欢迎。通过处理庞大的病历数据,人工智能可以帮助医生快速找到潜在的疾病模式和关联,从而为制定个性化的治疗方案提供支持。人工智能还可以预测疾病的风险,提前做好干预措施,有效降低疾病的发病率。 此外,人工智能在手术辅助系统中也有广泛应用。通过模拟手术过程和精确的定位,人工智能可以提供精确的手术引导,减少手术风险并提高手术成功率。例如,机器人辅助手术系统可以通过准确的定位和智能的操作,提高手术精确度,缩短手术时间,减少患者的恢复时间。 综上所述,人工智能在医疗技术中的应用前景广阔。它不仅可以提高医疗服务的质量和效率,还能帮助医生提供更准确、个性化的诊断和治疗方案。相信未来,在人工智能的帮助下,我们将迎来更加智能和人性化的医疗世界。 感谢大家的聆听,希望我今天的分享对大家有所帮助。如果你对这个话题有任何疑或想要了解更多,请随时在评论区留言。谢谢! ### 回答3: 标题:探索人工智能在计算机视觉中的应用 正文: 近年来,人工智能(Artificial Intelligence,AI)技术在各个领域都得到了广泛的应用,特别是在计算机视觉方面。计算机视觉是指通过计算机和相关技术对图像和视频进行处理与分析的能力。本文将探索人工智能在计算机视觉中的应用以及带来的潜在影响。 首先,人工智能为计算机视觉领域带来了突破性的进展。通过深度学习和神经网络等技术,计算机能识别和理解图像中的对象,并实现多样化的注释和分类。例如,人脸识别技术的发展使得人员身份验证和安全监控领域取得了重大突破。此外,AI在医疗图像分析、自动驾驶和机器人视觉等领域也得到了广泛应用,大大提高了效率和准确性。 其次,AI还为计算机视觉领域带来了新的挑战和机遇。尽管现在的人工智能技术已经能实现一定程度的视觉理解,但仍然存在一些题和限制。例如,对于复杂的图像场景和遮挡物的处理仍然具有挑战性。此外,如何在保护隐私和确保公平性的前提下使用人脸识别技术等AI应用也是一个亟需解决的题。 最后,人工智能的发展也引发了对计算机视觉伦理和社会影响的讨论。随着AI在个人隐私、就业和社会伦理等方面的重要应用,我们需要思考如何确保技术的公正和透明,并制定相关的政策和法规。此外,积极推动相关技术的研发和应用,培养专业人才,也是保持竞争力和推动社会进步的关键。 综上所述,人工智能在计算机视觉中的应用带来了许多机遇和挑战。通过不断的研究和创新,我们可以更好地利用这一技术,推动计算机视觉的发展,并加以合理的伦理和社会规范。这将为我们的社会带来更多的便利和进步。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值