CellMarker 2.0 | 鼠标点一点就完成单细胞分析的完美工具~

alt

1写在前面

本期我们介绍一下CellMarker 2.0上更新的6网页工具,主要是用于scRNA-seq数据的分析可视化。🥰

网址如下:👇

📍http://bio-bigdata.hrbmu.edu.cn/CellMarker/index.html

alt

2Single cell web tools 概览

作者通过搜索GEO(https://www.ncbi.nlm.nih. gov/geo/)数据库的scRNA-seq数据,整合了108scRNA-seq数据,38种疾病,1,467,748个细胞。🥳

6大功能:👇

  • Cell annotation
  • Cell clustering
  • Cell malignancy
  • Cell differentiation
  • Cell feature
  • Cell communication

3Cell annotation

1️⃣ 我们先看第一个工具吧。😚

大家可以通过选择物种组织输入基因来定义细胞类型,这里我们以人类血液为例,heatmap显示输入的基因出现在哪些细胞类型的marker中,以及这些细胞类型的得分。🥳

alt

2️⃣ 这个Score的计算是这样得来的:👇

Note ! 其中A代表输入基因细胞类型iMarker基因的交集数,B表细胞类型iMarker基因的总数, 可以反映输入基因细胞类型i中的比例。🍎


3️⃣ 下载后的heatmap,直接就是发表级。😉

alt

4Cell clustering

1️⃣ 在这里,大家可以对scRNA-seq数据进行聚类分析,并获得不同聚类之间的差异表达基因。👀

可调参数,Resolution聚类方法。😊

这些结果都提供了下载接口,大家请放心食用。🤒

alt

2️⃣ 来看看有没有你研究的疾病吧!~😗

alt

3️⃣ Cell cluster plot

alt

4️⃣ Cell type plot

alt

5️⃣ 差异基因

alt

5Cell malignancy

Cell malignancy模块可以在不同的数据集中获得恶性肿瘤细胞的拷贝数变异CNV),基于InferCNV包。🤒

涉及的疾病还是挺多的,大家自取吧,也是支持高清大图下载的~😁

alt

alt

alt

6Cell differentiation

Cell differentiation功能中,有三个模块,分别是:👇

  • Cluster the cells;
  • Cell trajectory;
  • Gene trajectory

6.1 Cluster the cells

alt

6.2 Cell trajectory

细胞轨迹cell trajectory)分析,也叫拟时序pseudotime)分析,可以推断出发育过程中细胞的分化轨迹或细胞亚型的演化过程。😘

alt

6.3 Gene trajectory

Gene trajectory用于观察感兴趣的基因时间的表达变化。🤓

alt

其实这个功能就是基于Monocle 3包实现的,具体的一些名词或者参数大家有兴趣可以去学习一下,不过东西还是挺多的。😢

7Cell feature

细心的小伙伴会发现,这个Cell featureCell clustering很像啊。🤣

Yes~, 但是这个功能可以看单个基因的表达。🫣

alt

alt

接着你可以下载你需要的数据。🤗

alt

8Cell communication

最后是目前炙手可热细胞通讯Cell communication ),这个模块可以可视化细胞间的相互作用配体-受体平均表达量和配体-受体数量等。🤩

alt

8.1 Interaction Network

alt

8.2 Dotplot

Dotplot很大,这里就只展示一角了哈。😏

alt

8.3 Heatmap

alt

8.4 Heatmap [log]

为了Heatmap更好看,这里还提供了取log后的Heatmap。🥳

alt

9引用数据库😉

🌟 如何引用:👇

Hu C, Li T, Xu Y, et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data [published online ahead of print, 2022 Oct 27]. Nucleic Acids Res. 2022;gkac947. doi:10.1093/nar/gkac947


荷包蛋
最后祝大家早日不卷!~

点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰

📍 往期精彩

📍 🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!
📍 🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?
📍 🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)
📍 🤩 scRNA-seq | 吐血整理的单细胞入门教程
📍 🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~
📍 🤩 RColorBrewer | 再多的配色也能轻松搞定!~
📍 🧐 rms | 批量完成你的线性回归
📍 🤩 CMplot | 完美复刻Nature上的曼哈顿图
📍 🤠 Network | 高颜值动态网络可视化工具
📍 🤗 boxjitter | 完美复刻Nature上的高颜值统计图
📍 🤫 linkET | 完美解决ggcor安装失败方案(附教程)
📍 ......

alt

本文由 mdnice 多平台发布

<think>好的,我现在需要回答用户关于单细胞测序中细胞注释方法和工具的问题。首先,我要理解用户的需求。用户提到了单细胞测序中的细胞注释,可能对现有的方法和工具不太清楚,想了解有哪些常用方法和工具,以及它们的优缺和应用场景。 首先,我应该回顾自己掌握的知识。单细胞测序的细胞注释通常分为手动注释和自动注释两种。手动注释依赖于已知的标记基因和文献,而自动注释则使用计算工具或数据库。常见的工具包括CellMarker、SingleR、Seurat、ScType等。此外,用户提供的引用中提到了Celaref和CellMarker网站,需要将这些信息整合进去。 接下来,我需要确保回答结构清晰,分说明。可能的结构是:首先介绍基本流程,然后详细讲解手动和自动方法,再列举常用工具及其特,最后给出选择建议。同时,根据用户提供的引用内容,Celaref和CellMarker需要被适当引用,说明它们的应用场景和注意事项。 然后,要注意用户提到的系统级指令,比如正确使用LaTeX格式。虽然这个问题可能不涉及数学公式,但如果有相关统计方法或算法,可能需要用LaTeX表达,比如某些评分公式。不过,目前看来可能不需要,但还是要保持警惕。 用户还要求生成相关问题,我需要根据回答内容提出相关的问题,比如工具的比较、挑战、验证方法等。这些问题应该能够帮助用户进一步深入理解主题。 需要检查引用是否正确,用户提供的引用1和2都是关于细胞注释的工具和方法,特别是Celaref和CellMarker,这些在回答中要正确引用,并在末尾添加引用标识。 另外,用户可能对注释中的难感兴趣,比如标记基因的特异性问题,如S100A8和S100A9在中性粒细胞中的情况,这时候需要结合引用1中的内容说明手动验证的重要性。 最后,确保语言用中文,结构清晰,分步骤说明方法,工具部分用列表展示,可能的话用代码块展示工具的使用示例,但用户示例中用了Python代码,而单细胞分析常用R,所以可能需要调整。不过用户提供的引用中没有代码示例,可能不需要代码块,但如果有工具的使用步骤,可以简要说明。 总结步骤: 1. 介绍细胞注释的基本流程。 2.说明手动注释和自动注释的方法。 3. 列举常用工具,包括用户提到的Celaref和CellMarker,以及其他的如SingleR、Seurat等,说明各自特。 4. 结合引用内容,讨论注释中的挑战和注意事项。 5. 给出选择工具的建议。 6. 生成相关问题,如工具比较、挑战、验证方法等。 需要确保所有工具和方法的描述准确,引用正确,并且语言自然流畅,符合用户的要求。</think>### 单细胞测序中细胞注释的方法与工具 #### 一、细胞注释的基本流程 单细胞测序的细胞注释是通过基因表达数据识别细胞类型或亚型的过程,核心步骤包括: 1. **数据预处理**:归一化、降维(如PCA/t-SNE/UMAP)、聚类。 2. **标记基因筛选**:通过差异表达分析或已知标记基因库(如CellMarker[^2])确定候选基因。 3. **类型匹配**:将候选基因与已知细胞类型的标记基因比对,完成注释。 #### 二、主要方法分类 ##### 1. 手动注释法 - **原理**:结合文献和数据库(如CellMarker)手动筛选高表达基因。 - **优**:灵活性高,适合特定研究场景。 - **挑战**: - 标记基因可能跨细胞类型表达(如$S100A8$、$S100A9$在中性粒细胞和上皮细胞中均有表达)[^1]。 - 需依赖领域知识验证结果。 ##### 2. 自动注释工具 以下工具通过算法实现注释: | 工具 | 原理 | | |------------|----------------------------------------------------------------------|----------------------------------------------------------------------| | **SingleR** | 基于参考数据集的相关系数匹配 | 支持自定义参考集,适合人类/小鼠数据 | | **Seurat** | 整合差异基因分析与聚类 | 支持多组学数据,需手动筛选标记基因 | | **ScType** | 基于标记基因富集评分公式:$$score = \sum \frac{E_g}{\max(E)} \cdot w$$ | 自动化程度高,可识别亚型 | | **Celaref** | 通过聚类间相似性比对参考数据集 | 适用于稀有细胞类型注释 | #### 三、关键挑战与建议 1. **标记基因特异性问题** 部分基因(如$S100A8$)可能跨细胞类型表达,需结合实验背景验证。 2. **工具选择依据** - 数据量小或稀有细胞类型 → Celaref - 标准物种(人/小鼠) → SingleR - 需要亚型分辨 → ScType #### 四、典型工具使用示例(以SingleR为例) ```R library(SingleR) # 加载单细胞数据与参考数据集 sce <- readRDS("single_cell_data.rds") ref <- HumanPrimaryCellAtlasData() # 注释细胞类型 annotations <- SingleR(test = sce, ref = ref, labels = ref$label.main) ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值