【ESN-PSO】【ESN权重的粒子群优化】应用于Mackey和Glass时间序列预测研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

ESN-PSO方法将Echo State Networks(ESN)和Particle Swarm Optimization(PSO)结合起来,已经应用于Mackey和Glass时间序列的预测。ESN是一种强大而简单的网络,在机器学习领域取得了出色的成果,这要归功于其简单的架构和训练方法。ESN的独特特点之一是其特殊的拓扑结构,其中包括随机参数初始化,特别是针对储层和与权重相关的参数。然而,即使进行了一些预处理,比如利用其谱对储层矩阵的半径进行缩放,所得到的结果通常仍然令人不满意。为了解决这个问题,PSO被用来微调一些参数,包括来自储层、输入和反馈权重矩阵的参数。这种方法确保网络不仅仅是通过随机变量来调整,从而提高了其整体性能。ESN-PSO方法在Mackey和Glass时间序列的预测中取得了令人鼓舞的结果,展示了这种方法在解决复杂预测问题中的有效性。

ESN-PSO是一种将粒子群优化(PSO)算法与回声状态网络(ESN)结合使用的方法,用于时间序列预测。Mackey和Glass时间序列是两个经典的时间序列预测问题,常被用于测试预测模型的性能。

在ESN-PSO中,PSO算法用于优化ESN中的权重矩阵,以最小化预测误差。具体来说,PSO算法使用一群粒子来搜索权重空间,并根据预测误差不断更新粒子位置和速度,直到达到最优解。

该方法已被应用于Mackey和Glass时间序列预测问题,并取得了较好的预测性能。研究表明,ESN-PSO方法可以有效地优化ESN的权重矩阵,提高时间序列预测的准确性和稳定性。

ESN-PSO是一种有前途的时间序列预测方法,可以应用于各种实际问题中。

📚2 运行结果

部分代码:

function MGS = createmg(LEN, SUBS, ALPHA, BETA, GAMA, TAU, INITDUMMY)
% create Mackey-GLass time series
% LEN   - sequence length
% SUBS  - subsampling
% ALPHA, BETA, GAMA, TAU - Mackey-GLass time series parameters
% INITDUMMY - initial steps to supress (subsampling not taken into account)

% set default values
if nargin < 2, SUBS = 10; end;
if nargin < 3, ALPHA = 0.2; end;
if nargin < 4, BETA = 10; end;
if nargin < 5, GAMA = 0.1; end;
if nargin < 6, TAU = 17; end;
if nargin < 7, INITDUMMY = 1000; end;

% set positions
start = SUBS * TAU + 1;
stop  = SUBS * (INITDUMMY + TAU + LEN + 1);
delay = SUBS * TAU;

% preallocate array and set up initial conditions
S = zeros(1,  stop);
S(start) = 1;

% create Mackey-Glass time series
for SI=(start:stop-1),
    NOM1 = ALPHA * S(SI-delay);
    DEN1 = 1 + S(SI-delay)^BETA;
    S(SI+1) = S(SI) + (NOM1 / DEN1 - GAMA * S(SI)) / SUBS;
end;

% remove dummy steps and take samples into output sequence
S(1:SUBS * (INITDUMMY + TAU)) = [];
MGS = S(1:SUBS:SUBS*LEN);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]李海天.基于PSO-ESN的线损模拟预测方法研究[D].华北电力大学(北京) 华北电力大学,2018.

[2]张梦,赵靓芳,全星.PSO-ESN在城市内涝点降雨积水预测中的应用[J].中国农村水利水电, 2019(6):5.DOI:10.3969/j.issn.1007-2284.2019.06.011.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值