pointpillars网络结构分为3个部分:
1:pillar feature net(柱状体特征编码)
2:2d backbone 网络结构(两个子网络)
3: detection head(检测头,使用的是SSD作为检测头)
1:pillars feature net(柱状体特征编码)
首先pillars feature net主要作用是将点云转换成2D伪图像,便于第二步的特征提取和融合。具体操作:(1)将空间中的点云,沿着Z轴方向,离散到平面xoy上的网格上,这样就得到一簇簇柱状体,然后设置非空柱状体为P。(2)柱状体内的点设置为N,多于N的采用随机取样,小于N的采用0补充。(3)点云中点经过pillar feature net将会得到增强,以前为(X,Y,Z,R)R表示为反射率。增强为(X,Y,Z,R,Xc,Yc,Zc,Xp,Yp)下标c表示为点到柱状体所有点的算术平均值的距离,也就是偏移量,下标p,表示为到柱状体中心的距离,用D表示。因此点云样本就可以用(P,N,D)表示。(4)经过简化版的pointnet处理,也就是经过多层mlp,bn,re