pointpillars网络结构讲解

PointPillars网络结构包含3个关键部分:柱状体特征编码、2D backbone网络和检测头。柱状体特征编码将点云转换为2D伪图像,2D backbone通过上下采样获取多尺度特征,检测头则采用SSD进行3D目标检测。损失函数由分类和框回归损失组成,考虑了定位和角度的精度。
摘要由CSDN通过智能技术生成

pointpillars网络结构分为3个部分:

1:pillar feature net(柱状体特征编码)

2:2d backbone 网络结构(两个子网络)

3:  detection head(检测头,使用的是SSD作为检测头)

1:pillars feature net(柱状体特征编码)

首先pillars feature net主要作用是将点云转换成2D伪图像,便于第二步的特征提取和融合。具体操作:(1)将空间中的点云,沿着Z轴方向,离散到平面xoy上的网格上,这样就得到一簇簇柱状体,然后设置非空柱状体为P。(2)柱状体内的点设置为N,多于N的采用随机取样,小于N的采用0补充。(3)点云中点经过pillar feature net将会得到增强,以前为(X,Y,Z,R)R表示为反射率。增强为(X,Y,Z,R,Xc,Yc,Zc,Xp,Yp)下标c表示为点到柱状体所有点的算术平均值的距离,也就是偏移量,下标p,表示为到柱状体中心的距离,用D表示。因此点云样本就可以用(P,N,D)表示。(4)经过简化版的pointnet处理,也就是经过多层mlp,bn,re

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值