colmap大场景稀疏重建记录:部分照片畸变导致sfm生成的稀疏点云扭曲

一、问题

如题,要进行一个大场景的3DGS重建,数据集来自于某工地现场(大约3000张照片),数据集拍摄于同一个相机,按照国际惯例,3DGS需要输入一个稀疏点云,所以首先利用colmap进行稀疏重建。

进行特征提取,特征匹配(colmap官网建议1000-10000张图的特征匹配使用vocab tree),稀疏重建以后,发现场景中,楼宇出现弯曲,分裂现象,如下图:

7f837e07183b8803bf92d19e18329141.jpg

f16e9f4dcc92944ac9a180e58ae9ec0c.jpg 问题出现以后,查看(在colmap gui界面双击)弯曲部分对应的照片,楼宇上下拍摄角度的照片并没有发现畸变(楼宇是直的,简单的用尺子或者其他工具对比一下,楼宇是否有弯曲)

bc44e38ddc63b3f43baca5f59c06b424.jpg

 从拍摄的照片来看,虽然是对着楼宇上下拍摄,

### 使用 Gazebo 数据集在 Colmap 中实现三维重建 为了利用来自 Gazebo 的数据集完成三维重建工作,在 Colmap 中的操作流程主要分为几个部分:准备图像序列、提取特征点并匹配、构建稀疏模型以及密集重建。 #### 准备阶段 Gazebo 是一款强的机器人仿真工具,可以模拟各种传感器获取的数据。对于视觉 SLAM 或 SfM (Structure from Motion),通常会使用 RGB-D 图像或单目相机拍摄的一系列图片作为输入[^1]。因此,首先要确保从 Gazebo 获取到合适的图像序列文件夹结构如下: ``` /path/to/images/ ├── image_00.png ├── image_01.png └── ... ``` 此外,还需要保存每张照片对应的位姿信息(即相机外参),这可以通过记录 ROS topic `/gazebo/model_states` 来获得,并将其转换成适合 COLMAP 处理的形式。 #### 特征检测与描述子计 安装好最新版本的 COLMAP 后,启动命令行界面进入项目目录下执行以下操作来加载图像路径下的所有图片: ```bash colmap feature_extractor \ --database_path database.db \ --image_path /path/to/images/ \ --ImageReader.camera_model SIMPLE_RADIAL ``` 上述指令指定了数据库位置 `database.db` 和待处理的图像所在的位置 `/path/to/images/` 。这里选择了简单的径向畸变校正模式 `SIMPLE_RADIAL` ,适用于多数情况;如果已知更精确的内参数,则可以选择其他模型如 PINHOLE 等[^2]。 #### 关键帧选取与两两匹配 接下来要做的就是挑选出具有代表性的关键帧用于后续建模过程中的几何约束条件建立。COLMAP 提供了一个名为 vocab_tree_matcher 的功能模块来进行高效的规模图像检索和粗略配对: ```bash colmap vocab_tree_matcher \ --database_path database.db \ --VocabTreeMatching.vocab_tree_path path_to_vocab_tree.bin ``` 此步骤依赖于预先训练好的词汇树索引文件 `vocab_tree.bin` 进行情景感知式的快速筛选,从而减少不必要的重复运量。 #### 构造初始稀疏场景图 当完成了前面提到的关键视图关联之后就可以着手创建初步的空间布局框架了——也就是所谓的“稀疏地图”。通过下面这条语句即可调用增量式SFM法自动推断出各时刻摄像机姿态变化轨迹及其所观察物体表面特征分布状况: ```bash colmap mapper \ --database_path database.db \ --image_path /path/to/images/ \ --output_path sparse ``` 此时会在指定输出地址处形成一个新的子文件夹 “sparse”,里面包含了经过优化后的多视角立体几何关系表达形式。 #### 密度化填充细节纹理 最后一步便是借助光束法平差技术进一步细化和完善整个虚拟环境内部结构轮廓线条走向,使得最终成果更加逼真自然。具体做法是在上一环节产生的基础之上运行稠密重建程序: ```bash mkdir dense cd dense colmap patch_match_stereo \ --PatchMatchStereo.geom_consistency true colmap stereo_fusion \ --workspace_path . \ --input_type geometric \ --output_path fused.ply ``` 以上命令先建立了新的工作空间 "dense" 并切换进去,接着采用基于补丁匹配的方法生成双目视差图谱,再经由融合滤波器得到完整的三角网格表示结果存储为 PLY 文件格式以便查看编辑[^3]。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值