✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
电力负荷预测对于电力系统安全稳定运行至关重要。随着智能电网的快速发展,负荷数据呈现出越来越复杂的非线性特征,传统预测方法难以准确地捕捉这些特征,导致预测精度下降。为此,本文提出了一种基于粒子群优化算法 (PSO) 优化的 Transformer-BiLSTM 模型,用于电力负荷数据回归预测。该模型首先利用 Transformer 强大的特征提取能力,有效地学习时间序列数据中的长期依赖关系。然后,将 Transformer 的输出作为 BiLSTM 的输入,进一步捕捉时间序列数据的双向信息。最后,利用 PSO 算法对模型参数进行优化,提高预测精度。实验结果表明,该模型在多个数据集上的预测精度均优于传统方法,证明了其有效性和实用性。
关键词:电力负荷预测;Transformer;BiLSTM;粒子群优化算法;回归预测
引言
电力负荷预测是电力系统安全稳定运行的关键环节,能够为电网调度、能源管理、电力市场交易等提供重要的参考依据。然而,随着智能电网的发展,电力负荷数据的复杂性和非线性特征越来越显著,传统预测方法如 ARIMA、SVM 等难以准确地捕捉这些特征,导致预测精度下降。
近年来,深度学习技术在电力负荷预测领域展现出巨大潜力。其中,Transformer 和 BiLSTM 作为两种强大的深度学习模型,在时间序列数据分析方面取得了显著进展。Transformer 通过注意力机制有效地学习长期依赖关系,而 BiLSTM 通过双向循环结构捕捉时间序列数据的双向信息。
为了进一步提高电力负荷预测的精度,本文提出了一种基于 PSO 优化的 Transformer-BiLSTM 模型。该模型将 Transformer 和 BiLSTM 的优势相结合,并利用 PSO 算法对模型参数进行优化,从而提高预测精度。
模型结构
本文提出的 Transformer-BiLSTM 模型主要包含以下三个部分:
(1) Transformer 部分:
Transformer 利用多头注意力机制 (Multi-Head Attention) 和前馈神经网络 (Feedforward Neural Network) 来学习时间序列数据的长期依赖关系。具体来说,Transformer 使用多个编码器层来提取特征,每个编码器层包含多头注意力机制和前馈神经网络。多头注意力机制可以有效地捕捉不同位置之间的时间相关性,而前馈神经网络可以进一步增强特征表达能力。
(2) BiLSTM 部分:
BiLSTM 是一种双向循环神经网络,能够捕捉时间序列数据的双向信息。BiLSTM 的前向和后向循环网络分别学习时间序列数据的前向和后向信息,并将这两个信息结合在一起,从而更全面地理解数据中的时间关系。
(3) PSO 优化:
PSO 算法是一种启发式优化算法,通过模拟鸟群觅食的行为来寻找最优解。在本文中,将 PSO 算法应用于 Transformer-BiLSTM 模型的参数优化。将模型参数作为 PSO 算法中的粒子,通过迭代更新粒子位置来寻找最优参数组合,从而提高预测精度。
数据预处理
为了确保模型训练的有效性,对负荷数据进行以下预处理:
**(1) 数据清洗:**剔除数据中存在的异常值和缺失值,保证数据的完整性和可靠性。
**(2) 数据归一化:**将负荷数据归一化到 [0, 1] 之间,避免数值过大或过小对模型训练造成影响。
**(3) 数据划分:**将数据集划分为训练集、验证集和测试集,分别用于模型训练、参数调优和最终评估。
模型训练
模型训练采用反向传播算法,通过最小化损失函数来更新模型参数。损失函数选用均方误差 (MSE),用于衡量模型预测值与真实值之间的偏差。
模型评估
模型评估指标包括:
**(1) 均方根误差 (RMSE):**衡量模型预测值与真实值之间的平均误差。
**(2) 平均绝对误差 (MAE):**衡量模型预测值与真实值之间的平均绝对偏差。
**(3) 决定系数 (R2):**衡量模型对数据的拟合程度。
实验结果
本文选取了多个真实电力负荷数据集进行实验,并与传统方法进行比较。实验结果表明:
(1) 本文提出的 Transformer-BiLSTM 模型在所有数据集上的预测精度均优于传统方法,如 ARIMA、SVM 等。
(2) PSO 算法能够有效地优化模型参数,进一步提高预测精度。
(3) Transformer 和 BiLSTM 的结合能够有效地捕捉电力负荷数据中的非线性特征,提升模型的预测能力。
结论
本文提出了一种基于 PSO 优化的 Transformer-BiLSTM 模型,用于电力负荷数据回归预测。该模型能够有效地捕捉时间序列数据的长期依赖关系和双向信息,并利用 PSO 算法进行参数优化,提高预测精度。实验结果证明了该模型在电力负荷预测领域的有效性和实用性。未来将继续研究如何进一步提升模型的泛化能力和鲁棒性,使其能够更好地适应各种电力负荷数据。
⛳️ 运行结果
📣 部分代码
%% 数据分析
num_size = 0.8; % 训练集占数据集比例
outdim = 2; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类