JCR一区级 | Matlab实现PSO-Transformer-BiLSTM多变量回归预测

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

电力负荷预测对于电力系统安全稳定运行至关重要。随着智能电网的快速发展,负荷数据呈现出越来越复杂的非线性特征,传统预测方法难以准确地捕捉这些特征,导致预测精度下降。为此,本文提出了一种基于粒子群优化算法 (PSO) 优化的 Transformer-BiLSTM 模型,用于电力负荷数据回归预测。该模型首先利用 Transformer 强大的特征提取能力,有效地学习时间序列数据中的长期依赖关系。然后,将 Transformer 的输出作为 BiLSTM 的输入,进一步捕捉时间序列数据的双向信息。最后,利用 PSO 算法对模型参数进行优化,提高预测精度。实验结果表明,该模型在多个数据集上的预测精度均优于传统方法,证明了其有效性和实用性。

关键词:电力负荷预测;Transformer;BiLSTM;粒子群优化算法;回归预测

引言

电力负荷预测是电力系统安全稳定运行的关键环节,能够为电网调度、能源管理、电力市场交易等提供重要的参考依据。然而,随着智能电网的发展,电力负荷数据的复杂性和非线性特征越来越显著,传统预测方法如 ARIMA、SVM 等难以准确地捕捉这些特征,导致预测精度下降。

近年来,深度学习技术在电力负荷预测领域展现出巨大潜力。其中,Transformer 和 BiLSTM 作为两种强大的深度学习模型,在时间序列数据分析方面取得了显著进展。Transformer 通过注意力机制有效地学习长期依赖关系,而 BiLSTM 通过双向循环结构捕捉时间序列数据的双向信息。

为了进一步提高电力负荷预测的精度,本文提出了一种基于 PSO 优化的 Transformer-BiLSTM 模型。该模型将 Transformer 和 BiLSTM 的优势相结合,并利用 PSO 算法对模型参数进行优化,从而提高预测精度。

模型结构

本文提出的 Transformer-BiLSTM 模型主要包含以下三个部分:

(1) Transformer 部分:

Transformer 利用多头注意力机制 (Multi-Head Attention) 和前馈神经网络 (Feedforward Neural Network) 来学习时间序列数据的长期依赖关系。具体来说,Transformer 使用多个编码器层来提取特征,每个编码器层包含多头注意力机制和前馈神经网络。多头注意力机制可以有效地捕捉不同位置之间的时间相关性,而前馈神经网络可以进一步增强特征表达能力。

(2) BiLSTM 部分:

BiLSTM 是一种双向循环神经网络,能够捕捉时间序列数据的双向信息。BiLSTM 的前向和后向循环网络分别学习时间序列数据的前向和后向信息,并将这两个信息结合在一起,从而更全面地理解数据中的时间关系。

(3) PSO 优化:

PSO 算法是一种启发式优化算法,通过模拟鸟群觅食的行为来寻找最优解。在本文中,将 PSO 算法应用于 Transformer-BiLSTM 模型的参数优化。将模型参数作为 PSO 算法中的粒子,通过迭代更新粒子位置来寻找最优参数组合,从而提高预测精度。

数据预处理

为了确保模型训练的有效性,对负荷数据进行以下预处理:

**(1) 数据清洗:**剔除数据中存在的异常值和缺失值,保证数据的完整性和可靠性。

**(2) 数据归一化:**将负荷数据归一化到 [0, 1] 之间,避免数值过大或过小对模型训练造成影响。

**(3) 数据划分:**将数据集划分为训练集、验证集和测试集,分别用于模型训练、参数调优和最终评估。

模型训练

模型训练采用反向传播算法,通过最小化损失函数来更新模型参数。损失函数选用均方误差 (MSE),用于衡量模型预测值与真实值之间的偏差。

模型评估

模型评估指标包括:

**(1) 均方根误差 (RMSE):**衡量模型预测值与真实值之间的平均误差。

**(2) 平均绝对误差 (MAE):**衡量模型预测值与真实值之间的平均绝对偏差。

**(3) 决定系数 (R2):**衡量模型对数据的拟合程度。

实验结果

本文选取了多个真实电力负荷数据集进行实验,并与传统方法进行比较。实验结果表明:

(1) 本文提出的 Transformer-BiLSTM 模型在所有数据集上的预测精度均优于传统方法,如 ARIMA、SVM 等。

(2) PSO 算法能够有效地优化模型参数,进一步提高预测精度。

(3) Transformer 和 BiLSTM 的结合能够有效地捕捉电力负荷数据中的非线性特征,提升模型的预测能力。

结论

本文提出了一种基于 PSO 优化的 Transformer-BiLSTM 模型,用于电力负荷数据回归预测。该模型能够有效地捕捉时间序列数据的长期依赖关系和双向信息,并利用 PSO 算法进行参数优化,提高预测精度。实验结果证明了该模型在电力负荷预测领域的有效性和实用性。未来将继续研究如何进一步提升模型的泛化能力和鲁棒性,使其能够更好地适应各种电力负荷数据。

⛳️ 运行结果

📣 部分代码

%%  数据分析num_size = 0.8;                              % 训练集占数据集比例outdim = 2;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值