✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
数字预失真(DPD)技术作为一种高效的射频功率放大器(RFPA)线性化方法,在现代无线通信系统中扮演着至关重要的角色。本文深入探讨了两种基于最小均方(LMS)算法并结合递归预测误差方法(RPEM)算法的自适应DPD设计方案。首先,我们概述了DPD技术的基本原理,并详细分析了LMS算法和RPEM算法在DPD自适应过程中的作用。随后,我们阐述了两种具体的DPD结构,并对其自适应算法进行了详细推导和分析,重点讨论了其在复杂信道环境下的性能表现和优缺点。最后,我们对两种方案的未来发展趋势和挑战进行了展望。
1. 引言
现代无线通信系统对射频功率放大器(RFPA)的性能提出了日益严苛的要求。理想的RFPA应具有高功率效率和线性特性,但在实际应用中,RFPA往往呈现出非线性行为,这会导致信号失真、频谱扩展以及相邻信道干扰等问题,严重影响通信质量。数字预失真(DPD)技术通过在RFPA输入端预先施加与RFPA非线性特性相反的失真,有效地抵消RFPA带来的失真,从而实现线性化,并提高功率放大器的效率。
DPD系统的核心在于自适应算法的设计,它能够根据RFPA的实时特性动态调整预失真器的参数。经典的DPD自适应算法包括最小均方(LMS)算法、递归最小二乘(RLS)算法等。LMS算法因其计算简单、易于实现而被广泛采用,但其收敛速度相对较慢。RPEM算法则可以通过对预测误差的递归处理,提高自适应过程的收敛速度和跟踪性能。本文将围绕基于LMS算法并结合RPEM算法的自适应DPD设计展开深入探讨,分析两种不同的DPD结构及其自适应算法的特性。
2. DPD基本原理及LMS和RPEM算法
2.1 DPD基本原理
DPD技术的核心思想是,在RFPA的输入端预先引入一个与RFPA的非线性特性相反的失真信号。当预失真信号通过非线性RFPA时,其非线性特性将被抵消,从而在RFPA的输出端得到线性化的信号。DPD系统通常包括以下几个关键组成部分:
-
预失真器: 实现预失真功能的模块,其模型和参数决定了预失真效果。
-
反馈回路: 用于采集RFPA输出信号,并将其转换为数字信号进行分析。
-
自适应算法: 根据反馈信号调整预失真器参数,使其不断逼近RFPA的逆模型。
DPD技术可以分为直接学习法和间接学习法。直接学习法是通过直接拟合RFPA的逆模型来构建预失真器,而间接学习法则是通过拟合RFPA的模型,然后通过逆运算或迭代方法得到预失真器。本文主要讨论基于间接学习法的DPD设计。
2.2 最小均方(LMS)算法LMS算法是一种经典的自适应滤波算法,其核心思想是通过迭代调整滤波器系数,使得误差信号的均方值最小。在DPD应用中,误差信号通常定义为RFPA输出信号和期望信号之间的差异。LMS算法的更新公式如下:
w(n+1) = w(n) + μ * e(n) * x(n)^H
其中,w(n)是滤波器系数向量,μ是步长因子,e(n)是误差信号,x(n)是输入信号向量,H表示共轭转置。LMS算法具有以下优点:
-
计算简单: 其计算复杂度较低,易于硬件实现。
-
鲁棒性好: 对环境噪声和干扰具有一定的鲁棒性。
然而,LMS算法也存在以下缺点:
-
收敛速度慢: 特别是在输入信号相关性较强时,收敛速度较慢。
-
稳态误差大: 在非平稳环境下,容易产生较大的稳态误差。
2.3 递归预测误差方法(RPEM)算法
RPEM算法是一种参数估计方法,它通过递归地处理预测误差来估计模型参数。与LMS算法相比,RPEM算法具有更快的收敛速度和更好的跟踪性能,尤其适用于时变环境。在DPD应用中,RPEM算法可以用来估计RFPA的非线性模型参数。RPEM算法的更新公式如下:
θ(t+1) = θ(t) + K(t) * ε(t)
K(t) = P(t) * ψ(t)
P(t+1) = (P(t) - P(t) * ψ(t) * ψ(t)^T * P(t) / (λ + ψ(t)^T * P(t) * ψ(t)))/λ
ε(t) = y(t) - ψ(t)^T * θ(t)
其中,θ(t)是模型参数向量,K(t)是增益矩阵,P(t)是协方差矩阵,ε(t)是预测误差,ψ(t)是梯度向量,λ是遗忘因子。RPEM算法的优点包括:
-
收敛速度快: 比LMS算法具有更快的收敛速度。
-
跟踪性能好: 对时变环境具有更好的跟踪性能。
-
精度高: 在稳态条件下具有更高的估计精度。
然而,RPEM算法的计算复杂度较高,且对初始值的选择比较敏感。
3. 基于LMS和RPEM算法的自适应DPD设计
3.1 方案一:基于LMS算法的直接学习法DPD
该方案采用直接学习法,直接拟合RFPA的逆模型。其系统结构如图1所示:
[在此处插入图1,示意基于LMS算法的直接学习法DPD结构]
该系统的自适应过程如下:
-
采集信号: 采集RFPA的输出信号y(n)和输入信号x(n)。
-
构造误差信号: 计算误差信号e(n) = x(n) - z(n),其中z(n)是预失真器的输出信号。
-
参数更新: 使用LMS算法更新预失真器参数w(n)。
-
迭代更新: 重复步骤1-3,直到预失真器达到理想效果。
在该方案中,预失真器可以使用多项式模型或其他非线性模型。LMS算法直接用于调整预失真器的参数,使其不断逼近RFPA的逆模型。由于该方案采用直接学习法,其收敛速度相对较慢,且对噪声比较敏感。
3.2 方案二:基于RPEM算法的间接学习法DPD
该方案采用间接学习法,首先拟合RFPA的正向模型,然后通过逆运算或迭代方法得到预失真器。其系统结构如图2所示:
[在此处插入图2,示意基于RPEM算法的间接学习法DPD结构]
该系统的自适应过程如下:
-
采集信号: 采集RFPA的输出信号y(n)和输入信号x(n)。
-
构造预测误差: 使用RPEM算法,基于输入信号x(n)和当前RFPA模型参数估计输出信号ŷ(n),并计算预测误差ε(n) = y(n) - ŷ(n)。
-
参数更新: 使用RPEM算法更新RFPA模型参数θ(n)。
-
预失真器更新: 通过逆运算或迭代方法,基于更新的RFPA模型参数,计算预失真器参数。
-
迭代更新: 重复步骤1-4,直到预失真器达到理想效果。
在该方案中,RFPA模型可以使用多项式模型或其他非线性模型。RPEM算法用于估计RFPA模型参数,然后通过逆运算或迭代方法计算预失真器参数。由于该方案采用RPEM算法,其收敛速度较快,且对时变环境具有更好的跟踪性能。
📣 部分代码
function coef = fit_memory_poly_model(x, y, lengthVector, memorylen, degree)
% Copyright 2013-2014 The MathWorks, Inc.
% From "A generalized memory polynomical model for digital predistortion of
% RF power amplifiers", Morgan, Ma, Kim, Zierdt, and Pastalan, IEEE Trans
% Sig Proc, 54(10)
% Note the memory polynomial in the paper is undefined for the first
% memorylen samples, as n - m < 0 and hence undefined. We simply ignore the first memorylen samples.
% Note that the input vector x must be at least lengthVector + memorylen
% long.
% x_terms has lengthVector rows and number of columns corresponding to kernels
x_terms = zeros(lengthVector,degree*memorylen);
for n = 1:lengthVector %cycle through training vector
for k = 1:degree %cycle through exponents
%A=[ a00 a01 a02 ... a0(M-1) , a10 a11 a12 ... a1(M-1 ), ... , a(K-1)0 a(K-1)1 a(K-1)(M-1)) ]
x_terms(n,(k - 1)*memorylen+(1:memorylen)) = (x(n:(n + memorylen-1)).*(abs(x(n:(n + memorylen -1))).^(k - 1))).';
end
end
%Use MATLAB \ operator to generate least squares solution to overdetermined
%problem
coef = x_terms\y(memorylen-1+(1:lengthVector));
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇