将混合动力电动重型车辆具有速度约束的生态驾驶问题的全局最优解与恒速轮廓驾驶进行比较附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球对能源消耗和环境污染问题的日益关注,重型车辆的燃油效率和排放控制已成为交通运输领域的研究热点。在众多节能减排技术中,生态驾驶技术因其无需大规模改造车辆基础设施、仅通过优化驾驶策略即可显著提升燃油效率的优势而备受关注。本文将重点探讨混合动力电动重型车辆(HEHV)速度约束下的生态驾驶问题,并对比分析全局最优解与恒速轮廓驾驶策略的性能差异。

首先,我们需明确生态驾驶的定义。生态驾驶是指通过优化车辆的行驶速度、加速度、换挡策略等,在保证车辆安全、准时到达目的地的前提下,最小化燃油消耗和尾气排放的驾驶方式。对于HEHV而言,生态驾驶更具有复杂性,因为它需要同时优化发动机、电机和能量回收系统的协同工作,从而充分利用混合动力系统的优势。

在速度约束的条件下,HEHV的生态驾驶问题通常被建模为一个非线性优化问题,其中目标函数为燃油消耗量和尾气排放量的加权和,约束条件包括车辆的物理限制、速度限制以及到达时间的限制。寻找该问题的全局最优解是极具挑战性的,因为问题往往具有高度非线性、非凸性和多模态性。目前,常用的全局优化方法包括动态规划、伪谱法以及基于人工智能的优化算法,如遗传算法、粒子群优化算法等。这些方法虽然可以有效地逼近全局最优解,但计算复杂度较高,尤其是在考虑复杂的车辆模型和环境因素时,计算时间可能无法满足实时性要求。

另一方面,恒速轮廓驾驶是一种简化的驾驶策略,它通过预先规划车辆的行驶速度曲线,并尽可能保持车辆以恒定速度行驶来减少能量消耗。恒速轮廓驾驶的优势在于其实现简单、计算量小,易于在线应用。然而,由于其忽略了地形、交通状况等因素的影响,恒速轮廓驾驶的性能往往低于全局最优解。

接下来,我们将对全局最优解和恒速轮廓驾驶进行深入的比较分析,并从多个角度阐述它们的优缺点:

1. 燃油效率与排放性能:

理论上,全局最优解可以充分利用车辆的动力系统特性,根据实际路况和交通状况进行精细化控制,从而获得最佳的燃油效率和排放性能。它可以通过优化发动机的运行点、调整电机的助力和能量回收策略,最大限度地降低能量损失。然而,全局最优解的性能高度依赖于车辆模型的准确性、路况信息的完备性以及优化算法的有效性。如果车辆模型不够精确,或者路况信息不完整,则全局最优解的性能可能会受到影响。

相比之下,恒速轮廓驾驶的燃油效率和排放性能相对较低。因为它忽略了车辆的动态特性和环境因素的影响,无法根据实际情况进行调整。例如,在爬坡路段,恒速轮廓驾驶可能会导致发动机负荷过高,从而增加燃油消耗;而在下坡路段,恒速轮廓驾驶可能无法充分利用能量回收系统,导致能量的浪费。

2. 计算复杂度与实时性:

全局最优解的计算复杂度通常较高,需要大量的计算资源和时间才能获得较好的优化结果。尤其是在考虑复杂的车辆模型和环境因素时,计算时间可能会无法满足实时性要求。因此,全局最优解更适合于离线规划,例如用于车辆性能评估和驾驶策略优化。

恒速轮廓驾驶的计算复杂度较低,易于在线应用。因为它不需要进行复杂的优化计算,只需要根据预先设定的速度曲线控制车辆行驶即可。因此,恒速轮廓驾驶更适合于实时控制,例如用于辅助驾驶和智能交通系统。

3. 对路况变化的适应性:

全局最优解具有较强的对路况变化的适应性。它可以根据实时的路况信息,动态地调整车辆的行驶速度和动力分配策略,从而最大限度地降低能量消耗。例如,当检测到前方拥堵时,全局最优解可以提前降低车速,并尽可能地利用能量回收系统,从而减少制动能量的损失。

恒速轮廓驾驶对路况变化的适应性较差。因为它无法根据实际路况进行调整,只能按照预先设定的速度曲线行驶。因此,当路况发生变化时,恒速轮廓驾驶的性能可能会受到显著影响。

4. 对驾驶员行为的依赖性:

全局最优解的性能在很大程度上依赖于驾驶员的行为。如果驾驶员无法准确地执行全局最优解的驾驶策略,则全局最优解的性能可能会下降。例如,如果驾驶员频繁地进行急加速或急刹车,则全局最优解的能量回收效果可能会受到影响。

恒速轮廓驾驶对驾驶员行为的依赖性相对较小。因为它只需要驾驶员保持车辆以恒定速度行驶即可。因此,恒速轮廓驾驶更易于推广和应用。

综上所述,全局最优解和恒速轮廓驾驶各有优缺点。全局最优解可以获得最佳的燃油效率和排放性能,但计算复杂度较高,对路况信息和驾驶员行为的依赖性较强。恒速轮廓驾驶实现简单、计算量小,但性能相对较低,对路况变化的适应性较差。

为了充分发挥两种策略的优势,可以考虑将它们结合起来使用。例如,可以利用全局最优解进行离线规划,生成最优的速度曲线,然后利用恒速轮廓驾驶策略在线跟踪该速度曲线。同时,可以通过引入自适应控制算法,根据实际路况对速度曲线进行实时调整,从而提高对路况变化的适应性。

此外,随着人工智能技术的发展,可以利用深度学习等方法,构建更加智能的生态驾驶系统。该系统可以通过学习大量的驾驶数据,自动地提取驾驶模式,并根据实际路况和驾驶员行为进行智能化的决策,从而获得更优的燃油效率和排放性能。

总而言之,混合动力电动重型车辆速度约束下的生态驾驶是一个复杂而具有挑战性的问题。通过对比分析全局最优解和恒速轮廓驾驶的性能差异,我们可以更好地理解它们的优缺点,并为实际应用提供指导。未来的研究方向可以集中在提高全局优化算法的效率、增强对路况变化的适应性、降低对驾驶员行为的依赖性以及利用人工智能技术构建更加智能的生态驾驶系统。这将有助于进一步提高HEHV的燃油效率和排放性能,为实现可持续发展做出贡献。

⛳️ 运行结果

🔗 参考文献

[1] 贾元.复杂驾驶条件下智能燃料电池汽车生态驾驶控制策略研究[D].昆明理工大学,2023.

[2] 顾浩.非路面车辆驾驶室六足并联悬架系统设计及动态特性研究[D].南京农业大学,2012.DOI:10.7666/d.Y2361259.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值