Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在现代科技日益发展的背景下,精确预测已成为各行各业不可或缺的关键环节。从金融市场的波动预测到气候变化的长期模拟,再到工业生产过程的优化控制,准确的预测模型能够帮助我们更好地理解复杂系统,制定合理的决策,降低风险,并提高效率。特别是在处理多变量时序数据时,传统的统计方法往往捉襟见肘,而基于深度学习的模型则展现出强大的学习能力和预测精度。本文将深入探讨五种深度学习模型在多变量回归预测任务中的性能表现,分别是:Transformer-LSTM、Transformer、CNN-LSTM、LSTM和CNN。我们将从模型原理、适用场景、优缺点以及实验结果等方面进行全面比较与分析,旨在为实际应用中模型的选择提供参考依据。

一、模型原理概述

在深入比较之前,我们首先需要对这五种模型的原理进行简要回顾:

  • 长短期记忆网络 (LSTM): 作为循环神经网络 (RNN) 的一种变体,LSTM 通过引入记忆单元和门控机制 (输入门、遗忘门和输出门) 解决了传统 RNN 在处理长序列时出现的梯度消失和梯度爆炸问题。LSTM 擅长捕捉序列数据中的长期依赖关系,在语音识别、自然语言处理等领域取得了巨大成功。

  • 卷积神经网络 (CNN): CNN 主要通过卷积层和池化层提取输入数据的局部特征。卷积操作可以有效地识别数据中的空间模式,而池化操作则可以降低数据的维度,减少计算量。在图像识别、目标检测等领域,CNN 展现出强大的特征提取能力。

  • 卷积长短期记忆网络 (CNN-LSTM): CNN-LSTM 模型结合了 CNN 和 LSTM 的优势,首先利用 CNN 提取输入数据的空间特征,然后将这些特征输入 LSTM 网络,以捕捉序列数据中的时间依赖关系。这种模型在处理同时具有空间和时间特征的数据方面表现出色,例如视频分析、图像描述等。

  • Transformer: Transformer 是一种基于自注意力机制的模型,摒弃了传统的循环神经网络结构,采用并行计算的方式,大大提高了训练效率。自注意力机制允许模型关注输入序列中不同位置的信息,从而捕捉更复杂的依赖关系。Transformer 在自然语言处理领域取得了革命性的突破,并逐渐被应用于其他领域。

  • Transformer-LSTM: Transformer-LSTM 模型将 Transformer 的自注意力机制与 LSTM 的时间序列建模能力相结合,首先利用 Transformer 提取输入序列的全局特征和上下文信息,然后将这些特征输入 LSTM 网络,以捕捉时间依赖关系。这种模型旨在结合 Transformer 的全局建模能力和 LSTM 的局部序列建模能力,从而提高预测精度。

二、模型适用场景与优缺点

不同的模型具有不同的特性,因此适用于不同的应用场景。以下分别对这五种模型的适用场景和优缺点进行分析:

表格

模型

适用场景

优点

缺点

LSTM

对时序数据进行预测,数据存在长期依赖关系。

能够捕捉长序列中的长期依赖关系;结构相对简单,易于实现和训练。

对参数初始化敏感;难以并行计算;在处理非常长的序列时可能仍然存在梯度问题。

CNN

提取数据中的局部特征,数据存在空间模式。

能够有效地提取局部特征;计算效率高;参数较少,泛化能力强。

难以捕捉长距离依赖关系;对输入数据的平移和旋转敏感。

CNN-LSTM

数据既存在空间特征,又存在时间依赖关系。

结合了 CNN 和 LSTM 的优点,能够同时提取空间特征和时间依赖关系。

模型结构复杂;训练时间较长;参数较多,容易过拟合。

Transformer

需要捕捉全局依赖关系,数据量较大。

能够捕捉全局依赖关系;可以并行计算,训练效率高;性能强大,表达能力强。

计算复杂度高;对输入数据的长度有限制;需要大量数据进行训练。

Transformer-LSTM

需要同时捕捉全局依赖关系和局部时间依赖关系。

结合了 Transformer 和 LSTM 的优点,能够捕捉全局依赖关系和局部时间依赖关系。

模型结构复杂;训练时间较长;参数较多,容易过拟合。

三、实验设计与评估指标

为了对这五种模型的性能进行比较,我们设计了一系列实验。实验数据采用模拟生成的多变量时序数据,包含多个变量,并存在一定的噪声和缺失值。数据的预处理包括缺失值填充、归一化处理等。模型的超参数调整采用网格搜索法,选择合适的学习率、batch size、dropout 概率等参数。

评估指标主要包括:

  • 均方误差 (MSE)

    : 衡量预测值与真实值之间的平均平方误差,MSE 越小,表示模型的预测精度越高。

  • 均方根误差 (RMSE)

    : 衡量预测值与真实值之间的平均误差,RMSE 越小,表示模型的预测精度越高。

  • 平均绝对误差 (MAE)

    : 衡量预测值与真实值之间的平均绝对误差,MAE 越小,表示模型的预测精度越高。

  • R 平方 (R²)

    : 衡量模型对数据的解释程度,R² 越接近 1,表示模型对数据的解释程度越高。

四、实验结果与分析

经过实验验证,我们对五种模型在多变量回归预测任务中的性能表现进行了总结和分析。

  • LSTM: 在处理较短的时序数据时,LSTM 表现出良好的预测精度。然而,在处理较长的时序数据时,由于梯度消失或梯度爆炸问题,LSTM 的性能会受到影响。

  • CNN: CNN 在提取数据的局部特征方面表现出色,但在捕捉长距离依赖关系方面存在不足。因此,CNN 在处理具有明显空间模式的数据时表现较好,但在处理纯粹的时间序列数据时性能可能不如 LSTM。

  • CNN-LSTM: CNN-LSTM 模型结合了 CNN 和 LSTM 的优点,在处理既具有空间特征又具有时间依赖关系的数据时表现出色。然而,由于模型结构复杂,训练时间较长,并且容易过拟合。

  • Transformer: Transformer 在捕捉全局依赖关系方面表现出色,能够有效地处理长序列数据。然而,由于计算复杂度较高,Transformer 需要大量的计算资源和训练数据。

  • Transformer-LSTM: Transformer-LSTM 模型结合了 Transformer 和 LSTM 的优点,在理论上应该能够同时捕捉全局依赖关系和局部时间依赖关系。然而,由于模型结构更加复杂,训练难度也更高,需要仔细调整超参数才能获得较好的性能。

具体来说,根据实验结果(以下数据仅为示例,实际结果会根据数据集和参数设置而有所不同):

表格

模型

MSE

RMSE

MAE

LSTM

0.045

0.212

0.155

0.855

CNN

0.060

0.245

0.180

0.800

CNN-LSTM

0.040

0.200

0.140

0.870

Transformer

0.035

0.187

0.130

0.885

Transformer-LSTM

0.030

0.173

0.120

0.900

从示例数据可以看出,Transformer-LSTM 在各个指标上都表现出相对较好的性能,其次是 Transformer。LSTM 和 CNN-LSTM 的性能相近,而 CNN 的性能相对较差。

五、结论与展望

本文对五种深度学习模型(Transformer-LSTM、Transformer、CNN-LSTM、LSTM 和 CNN)在多变量回归预测任务中的性能表现进行了比较与分析。实验结果表明,Transformer 和 Transformer-LSTM 在捕捉全局依赖关系方面具有优势,能够获得更高的预测精度。然而,这两个模型的计算复杂度较高,需要大量的计算资源和训练数据。LSTM 和 CNN-LSTM 在处理较短的时序数据时表现良好,但容易受到梯度消失或梯度爆炸问题的影响。CNN 在提取局部特征方面表现出色,但在捕捉长距离依赖关系方面存在不足。

在实际应用中,模型的选择需要根据具体的数据特点和应用场景进行综合考虑。如果数据量较大,且需要捕捉全局依赖关系,则可以考虑使用 Transformer 或 Transformer-LSTM。如果数据量较小,且对计算资源要求较高,则可以考虑使用 LSTM 或 CNN-LSTM。如果数据主要具有空间特征,则可以考虑使用 CNN。

未来研究可以从以下几个方面展开:

  • 模型优化

    : 针对不同模型的缺点进行优化,例如改进 LSTM 的梯度问题,降低 Transformer 的计算复杂度。

  • 模型融合

    : 将不同模型的优势结合起来,例如将 CNN 和 LSTM 融合,或者将 Transformer 和其他模型融合,以提高预测精度。

  • 超参数自动调整

    : 开发自动调整超参数的方法,以减少人工调参的工作量,提高模型的泛化能力。

  • 可解释性

    : 提高模型的解释性,以便更好地理解模型的预测结果,为决策提供更可靠的依据。

⛳️ 运行结果

🔗 参考文献

[1] 王润英,林思雨,方卫华,等.基于CNN-LSTM的大坝变形组合预测模型研究[J].水力发电, 2024, 50(1):37-41.DOI:10.3969/j.issn.0559-9342.2024.01.008.

[2] 朱毅丁,张云川,马云峰,等.基于CNN-LSTM-AM神经网络的多维长序列物流需求预测[J].物流科技, 2024, 47(18):49-56.

[3] 高凯,李勋豪,胡林,等.基于多头注意力的CNN-LSTM的换道意图预测[J].机械工程学报, 2022, 58(22):10.DOI:10.3901/JME.2022.22.369.

[4] 吉祥飞,李明东,陶卫国,等.基于多通道LSTM-CNN模型的Twitter情感分析[J].廊坊师范学院学报:自然科学版, 2019, 19(2):5.DOI:10.3969/j.issn.1674-3229.2019.02.005.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

CNN-LSTM(卷积神经网络-长短期记忆网络)是一种结合了卷积神经网络(CNN)和循环神经网络(RNN)中的一种变体LSTM(长短期记忆网络)结构的混合深度学习模型。这种组合使得它能够处理需要同时理解空间信息(如图像数据中的像素位置关系)以及时间序列依赖性的任务。 ### 模型工作流程: 1. **输入层**:接收原始的数据作为输入,比如一系列图片帧或者是传感器的时间序列信号。 2. **卷积层 (CNN)** :对每一时刻的单个样本应用二维或一维卷积操作提取特征向量。对于视频预测、动作识别等场景来说,这一步可以捕捉到每个静态画面内部的空间模式;而对于语音合成等问题,则有助于解析音频波形内的局部特性。 3. **池化层 (Pooling Layer, 可选)** : 经过若干轮次的下采样缩小尺寸并减少计算负担,同时也增强了平移不变性和抗噪能力。 4. **重塑成序列格式**:将经过上述步骤处理后的所有时间步的结果组织起来形成一个新的三维张量[T,H,W](T表示Time Steps),其中HxW对应于每张特征图的高度宽度。 5. **递归连接单元 - LSTM 层**: 接收到按顺序排列好的特征序列之后,在这里通过门控机制记住长期历史状态,并逐步更新当前隐藏状态ht用于传递给下一个时间点t+1继续迭代运算直到最后输出y^<t>。 6. **全连接层 / 输出层**:最终得到一个固定大小的概率分布或者其他类型的连续值结果作为整个系统的输出。 以下是简化版的工作流示意图: ``` [Input Data]->[Convolutional Layers]+[Max Pooling]*->[Flatten & Reshape Sequence]->[LSTM Units]->[Dense Output] ``` *注意这里的`+`代表可以选择添加更多类似组件而`*`意味着该部分是可以选择是否加入*
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值