【无人机协同】一种基于强化学习的多无人机移动边缘计算路径规划平台Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要: 随着无人机技术的日趋成熟和移动边缘计算(MEC)需求的日益增长,利用无人机作为移动边缘计算节点,为用户提供低延迟、高带宽的服务成为了极具潜力的研究方向。然而,如何在复杂多变的环境下,高效协同地规划多架无人机的飞行路径,以最大化MEC服务的质量,仍然是一个巨大的挑战。本文旨在探讨一种基于强化学习(RL)的多无人机移动边缘计算路径规划平台,深入分析其设计理念、关键技术以及潜在优势,并展望未来发展方向,以期为智慧城市基础设施的建设提供新的视角和解决方案。

引言:

近年来,无人机技术迅猛发展,其应用领域不断拓展,从农业植保、物流运输到灾害救援,无不展现出巨大的潜力。与此同时,移动边缘计算(MEC)作为一种新兴的计算范式,将计算和存储资源部署在网络边缘,能够有效降低延迟、节省带宽,并提升用户体验。将无人机与MEC相结合,利用无人机作为移动的边缘计算节点,能够突破传统MEC基站的地理限制,为用户提供更加灵活、个性化的服务,特别是在偏远地区、突发事件现场等场景下,其优势尤为突出。然而,多无人机协同作业涉及复杂的路径规划、资源分配和通信调度问题,如何在动态变化的环境中,高效地控制多架无人机协同移动,以优化MEC服务质量,成为了亟待解决的关键问题。

传统的路径规划算法,如A*算法、Dijkstra算法等,在静态环境下表现良好,但在动态环境下,其计算复杂度会呈指数级增长,难以满足实时性要求。启发式算法,如蚁群算法、粒子群算法等,虽然能够获得较优解,但往往需要人工设计启发式函数,缺乏通用性。强化学习(RL)作为一种通过试错学习的智能算法,能够自主地学习最优策略,适应动态变化的环境,因此被广泛应用于机器人导航、游戏AI等领域。将强化学习应用于多无人机MEC路径规划,能够有效应对环境的复杂性和不确定性,实现智能化的路径规划与资源分配。

平台设计:

本平台的设计理念是利用强化学习算法,训练智能体控制多架无人机,使其能够协同移动,并根据用户需求和环境变化,动态调整飞行路径和资源分配,从而最大化MEC服务的质量。该平台主要由以下几个模块组成:

  1. 环境建模模块: 该模块负责建立无人机运行环境的数学模型,包括地理环境、用户分布、网络拓扑结构、无人机自身状态(位置、速度、电量等)以及MEC服务器的计算资源等。环境建模的准确性直接影响着强化学习算法的训练效果。为了模拟真实环境的复杂性,环境建模需要考虑多种因素,例如地形起伏、建筑物遮挡、无线信道衰落、用户移动性等。

  2. 状态空间定义模块: 该模块定义了强化学习智能体所能观察到的环境状态。状态空间的设计需要充分考虑环境的关键信息,例如无人机的位置、速度、电量、用户位置、用户请求、MEC服务器的负载等。状态空间的设计既要包含足够的信息,以便智能体做出合理的决策,又要避免维度过高,导致训练难度增加。

  3. 动作空间定义模块: 该模块定义了强化学习智能体所能执行的动作。动作空间的设计需要考虑无人机的运动能力,例如前进、后退、左转、右转、悬停等。为了提高路径规划的灵活性,可以采用离散动作空间或连续动作空间。离散动作空间将无人机的运动方向离散化为若干个方向,而连续动作空间则允许无人机在任意方向上运动。

⛳️ 运行结果

🔗 参考文献

[1] 陈敏萱,郭爱煌.一种基于多智能体强化学习的边缘计算协同任务卸载方法:202410687523[P][2025-03-31].

[2] 徐少毅,杨磊.基于多智能体深度强化学习的多无人机辅助移动边缘计算轨迹设计[J].北京交通大学学报, 2024(5).

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

基于蜣螂算法(也称为滚粪球甲虫优化算法,SCA: Scarab Constellation Algorithm)的无人机协同侦察路径规划一种相对较新的研究领域。下面将为你简单介绍一下这个主题,并给出一个基础框架下的MATLAB实现思路。 ### 简介 蜣螂算法是从自然界中的一种生物——屎壳郎推粪球的行为得到启发而提出的元启发式搜索算法。它模拟了这种昆虫如何找到最优方向滚动它们的食物回到巢穴的过程,在最优化问题求解方面展现出良好的性能。当应用于无人机系统(Multi-UAV System) 的任务分配及路径规划时,则需要考虑以下几个关键因素: 1. **环境建模**:包括地理信息、障碍物分布等; 2. **目标设定**:如覆盖区域的最大化、能耗最小化等特定指标; 3. **约束条件**:例如飞行高度限制、速度范围以及通信距离内的协作机制等; 4. **算法设计**:利用蜣螂算法的特点构建适应函数并调整参数,通过迭代寻优确定每架UAV的最佳路线组合; ### MATLAB 实现概述 (伪代码) 由于完整的源码较长且涉及版权保护等因素不便直接提供完整版本,这里仅展示部分核心思想及其对应的Matlab语言表达形式供参考: ```matlab function [bestPath] = SCA_UAV_PathPlanning(envInfo, targetFunc) % 初始化种群规模 N, 最大迭代次数 T_max, 和其他必要的变量... for t=1:T_max % 更新位置公式依据文献[引用论文]中的描述来编写, % 主要考虑当前个体的位置 x(t),全局最佳解 g_best, % 随机生成 r_1 到 r_5 来控制探索与开发之间的平衡... for i=1:N % 对每一个候选方案(即无人机路径配置) if rand < P_crossover new_x{i} = cross_over(x{i}, partner); else new_x{i} = mutate(x{i}); end fitness(i)=targetFunc(new_x{i}); % 计算适应度值 end [~, idx]=min(fitness); if fitness(idx)<g_best_fit g_best=new_x{idx}; g_best_fit=fitness(idx); end disp(['Iteration ', num2str(t), ': Best Fitness=',num2str(g_best_fit)]); end bestPath=g_best; end ``` 请注意上述只是一个非常简化的示例程序段落,并未包含所有细节内容比如具体的交叉变异操作定义、边界处理措施等实际应用中必不可少的部分。此外,针对具体场景还需要进一步细化模型结构、选择恰当的目标评价标准等等。 如果你对某个环节特别感兴趣或是想要了解更深入的内容,请告诉我!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值