✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 随着无人机技术的日趋成熟和移动边缘计算(MEC)需求的日益增长,利用无人机作为移动边缘计算节点,为用户提供低延迟、高带宽的服务成为了极具潜力的研究方向。然而,如何在复杂多变的环境下,高效协同地规划多架无人机的飞行路径,以最大化MEC服务的质量,仍然是一个巨大的挑战。本文旨在探讨一种基于强化学习(RL)的多无人机移动边缘计算路径规划平台,深入分析其设计理念、关键技术以及潜在优势,并展望未来发展方向,以期为智慧城市基础设施的建设提供新的视角和解决方案。
引言:
近年来,无人机技术迅猛发展,其应用领域不断拓展,从农业植保、物流运输到灾害救援,无不展现出巨大的潜力。与此同时,移动边缘计算(MEC)作为一种新兴的计算范式,将计算和存储资源部署在网络边缘,能够有效降低延迟、节省带宽,并提升用户体验。将无人机与MEC相结合,利用无人机作为移动的边缘计算节点,能够突破传统MEC基站的地理限制,为用户提供更加灵活、个性化的服务,特别是在偏远地区、突发事件现场等场景下,其优势尤为突出。然而,多无人机协同作业涉及复杂的路径规划、资源分配和通信调度问题,如何在动态变化的环境中,高效地控制多架无人机协同移动,以优化MEC服务质量,成为了亟待解决的关键问题。
传统的路径规划算法,如A*算法、Dijkstra算法等,在静态环境下表现良好,但在动态环境下,其计算复杂度会呈指数级增长,难以满足实时性要求。启发式算法,如蚁群算法、粒子群算法等,虽然能够获得较优解,但往往需要人工设计启发式函数,缺乏通用性。强化学习(RL)作为一种通过试错学习的智能算法,能够自主地学习最优策略,适应动态变化的环境,因此被广泛应用于机器人导航、游戏AI等领域。将强化学习应用于多无人机MEC路径规划,能够有效应对环境的复杂性和不确定性,实现智能化的路径规划与资源分配。
平台设计:
本平台的设计理念是利用强化学习算法,训练智能体控制多架无人机,使其能够协同移动,并根据用户需求和环境变化,动态调整飞行路径和资源分配,从而最大化MEC服务的质量。该平台主要由以下几个模块组成:
-
环境建模模块: 该模块负责建立无人机运行环境的数学模型,包括地理环境、用户分布、网络拓扑结构、无人机自身状态(位置、速度、电量等)以及MEC服务器的计算资源等。环境建模的准确性直接影响着强化学习算法的训练效果。为了模拟真实环境的复杂性,环境建模需要考虑多种因素,例如地形起伏、建筑物遮挡、无线信道衰落、用户移动性等。
-
状态空间定义模块: 该模块定义了强化学习智能体所能观察到的环境状态。状态空间的设计需要充分考虑环境的关键信息,例如无人机的位置、速度、电量、用户位置、用户请求、MEC服务器的负载等。状态空间的设计既要包含足够的信息,以便智能体做出合理的决策,又要避免维度过高,导致训练难度增加。
-
动作空间定义模块: 该模块定义了强化学习智能体所能执行的动作。动作空间的设计需要考虑无人机的运动能力,例如前进、后退、左转、右转、悬停等。为了提高路径规划的灵活性,可以采用离散动作空间或连续动作空间。离散动作空间将无人机的运动方向离散化为若干个方向,而连续动作空间则允许无人机在任意方向上运动。
⛳️ 运行结果
🔗 参考文献
[1] 陈敏萱,郭爱煌.一种基于多智能体强化学习的边缘计算协同任务卸载方法:202410687523[P][2025-03-31].
[2] 徐少毅,杨磊.基于多智能体深度强化学习的多无人机辅助移动边缘计算轨迹设计[J].北京交通大学学报, 2024(5).
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇