【雷达】基于FMCW雷达探测的实时运动学的全球人类跑步模型附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

FMCW 雷达探测原理1

FMCW 雷达通过发射频率随时间变化的连续波信号,并接收目标反射的回波信号。发射信号与回波信号的频率差或相位差包含了目标的距离、速度等信息。例如,当目标物体(如跑步者)运动时,回波信号的频率会因多普勒效应而发生偏移,通过分析这种频率偏移可以得到跑步者的速度;根据信号往返的时间,可以计算出跑步者与雷达的距离,进而获取其位置信息,为构建实时运动学模型提供基础数据。

模型构建中的关键技术

  • 数据采集与预处理

    :布置 FMCW 雷达在各种不同场景(如室内跑道、室外操场等)中,对不同种族、年龄、性别、身体特征的大量人群进行跑步数据采集。采集到的数据可能存在噪声、干扰以及一些异常值,需要进行滤波、降噪、去除异常点等预处理操作,以提高数据的质量和可靠性,为后续的分析和建模提供良好的数据基础。

  • 特征提取与选择

    :从预处理后的数据中提取与跑步运动紧密相关的特征,如跑步速度的变化曲线、加速度的峰值和谷值、步幅的大小及其变化规律、步频的稳定性等。同时,结合统计学方法和领域知识,选择对模型贡献度高、具有代表性的特征,去除冗余特征,以降低模型的复杂度,提高模型的训练效率和泛化能力。

  • 模型训练与优化

    :采用机器学习、深度学习等方法构建全球人类跑步模型。例如,可以使用神经网络模型,将提取的特征作为输入,对跑步者的各种运动状态进行分类和预测;或者采用回归模型,建立跑步参数(如速度、步幅等)与人体特征(如身高、体重、年龄等)之间的定量关系。在模型训练过程中,通过调整模型的参数,如神经网络的权重和偏置,使模型的预测结果与实际数据之间的误差最小化。同时,采用交叉验证、正则化等技术防止模型过拟合,提高模型的泛化能力。

模型的应用

  • 体育训练领域

    :教练可以借助该模型分析运动员的跑步技术特点,发现潜在的问题,如步幅不合理、步频不稳定等,并制定个性化的训练计划,以提高运动员的跑步成绩。此外,还可以用于评估运动员的训练效果,及时调整训练方案。

  • 医疗康复领域

    :对于受伤或患病后进行康复训练的患者,医生可以通过该模型监测患者的跑步运动恢复情况,评估康复效果。例如,观察患者的跑步速度、步幅、步频等参数是否逐渐恢复到正常水平,为康复治疗提供客观的数据支持,以便制定更科学的康复计划。

  • 智能安防领域

    :在一些公共场所,如商场、车站等,通过部署 FMCW 雷达和该跑步模型,可以实时监测人员的运动状态。当检测到异常的跑步行为,如突然加速、方向突变等,系统可以及时发出警报,有助于预防突发事件的发生,保障公共场所的安全

⛳️ 运行结果

🔗 参考文献

[1] 刘宝,刘军民.FMCW雷达快速高精度测距算法[J].电子测量与仪器学报, 2001, 15(3):5.DOI:CNKI:SUN:DZIY.0.2001-03-008.

[2] 高香梅.FMCW防撞雷达系统中频信号处理的软硬件关键技术研究[D].合肥工业大学[2025-05-06].DOI:CNKI:CDMD:2.1013.377776.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值