【变分高斯Copula推断】基于Bernstein多项式的非参数转换则在描述单变量边缘后验时提供了充分的灵活性附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

变分推断(Variational Inference, VI)作为一种高效的近似贝叶斯推断方法,近年来受到了广泛关注。它通过最小化变分分布与真实后验分布之间的KL散度,将复杂的积分计算转化为可优化的目标函数,从而在大数据和复杂模型下实现近似后验推断。在处理多元数据时,如何构建一个能够灵活捕捉变量间复杂依赖关系的变分后验分布是变分推断面临的关键挑战之一。高斯Copula变分推断作为一种有效的解决方案,将后验分布分解为易于处理的边缘分布和表征变量间依赖结构的Copula函数,其中高斯Copula因其数学上的便利性而被广泛采用。然而,高斯Copula变分推断的性能在很大程度上取决于对单变量边缘后验分布的准确建模。传统的参数化方法,如使用简单的正态分布或混合高斯模型来近似边缘后验,往往受限于预设的函数形式,难以捕捉真实后验可能呈现的复杂形状(如多峰、偏态等)。

本文旨在深入探讨在变分高斯Copula推断框架下,采用基于Bernstein多项式的非参数转换方法在描述单变量边缘后验时所展现出的充分灵活性。我们将分析这种非参数转换的原理及其如何克服参数化方法的局限性,并阐述其在捕捉真实边缘后验分布复杂特征方面的优势。

1. 变分高斯Copula推断概述

图片

2. 参数化边缘后验的局限性

图片

这种局限性促使研究者探索更灵活的边缘分布建模方法,而无需对边缘后验的形状做出强烈的先验假设。非参数转换恰好提供了这种灵活性。

3. 基于Bernstein多项式的非参数转换

为了克服参数化边缘模型的限制,我们可以利用非参数转换将一个简单的参考分布(如标准正态分布)转换为具有任意复杂形状的边缘分布。基于Bernstein多项式的非参数转换是一种有效的实现方式。

图片

图片

4. Bernstein多项式非参数转换在描述单变量边缘后验时的灵活性

基于Bernstein多项式的非参数转换方法在描述单变量边缘后验时提供了以下显著的灵活性:

  • 任意形状的逼近能力: Bernstein多项式具有万能逼近定理,这意味着通过增加多项式的阶数(即控制点的数量KK),理论上可以无限逼近任意连续的边缘CDF。这使得模型能够捕捉到传统参数模型难以描述的复杂边缘形状,例如多峰、高度偏态、重尾或轻尾分布。无需预设边缘分布的函数形式,模型能够从数据中学习到最适合的边缘形状。

图片

  • 与变分推断框架的兼容性:

     基于Bernstein多项式的非参数转换函数是可导的,其导数(用于计算边缘PDF)也可以方便地计算。这与基于梯度下降的变分优化算法兼容,可以通过自动微分框架方便地计算ELBO对控制点的梯度,并进行优化。

  • 控制复杂度的能力:

     Bernstein多项式的阶数KK可以作为模型的超参数进行选择。增加KK可以增加模型的灵活性,但也会增加参数数量和计算复杂度。通过选择合适的KK,可以在模型灵活性和计算效率之间取得平衡。对于简单的边缘形状,可以选择较小的KK;对于复杂的形状,可以选择较大的KK。

5. 实际应用与优势

在变分高斯Copula推断中采用基于Bernstein多项式的非参数转换来建模边缘后验,可以带来以下实际优势:

  • 更准确的后验近似:

     通过更灵活地捕捉边缘后验的真实形状,模型能够获得更接近真实后验的变分近似,从而提高推断的准确性。这对于需要精确估计隐变量后验的下游任务至关重要。

  • 鲁棒性增强:

     当真实边缘后验形状与传统参数模型假设不符时,参数化方法可能会失效。非参数转换由于其灵活性,对真实后验的形状假设更少,因此具有更强的鲁棒性。

  • 信息损失减少:

     参数化方法在拟合复杂边缘形状时会丢失信息。非参数转换能够更全面地保留边缘分布的信息,从而使得变分推断能够更好地捕捉数据的潜在结构。

  • 适用于各种复杂模型:

     这种非参数边缘建模方法可以与各种基于高斯Copula的变分推断模型相结合,适用于处理各种复杂数据集和贝叶斯模型。

6. 挑战与未来方向

尽管基于Bernstein多项式的非参数转换在变分高斯Copula推断中展现出巨大的潜力,但也存在一些挑战和未来的研究方向:

  • 超参数选择:

     Bernstein多项式的阶数KK是一个重要的超参数,其选择会影响模型的灵活性和计算效率。如何自动或自适应地选择最优的KK是一个值得研究的问题。

  • 计算效率:

     随着KK的增加,模型参数数量会增加,可能会导致计算开销的增加。探索更有效的优化算法或结构化的Bernstein多项式表示以提高计算效率是未来的方向。

  • 高维数据的处理:

     虽然本文重点讨论了单变量边缘后验,但在处理高维数据时,如何有效地结合边缘非参数建模和高斯Copula结构是一个更复杂的问题。

  • 与其他非参数方法的比较:

     除了Bernstein多项式,还有其他非参数方法可以用于边缘分布建模,例如归一化流 (Normalizing Flows)。比较不同非参数方法的优劣并探索它们的结合使用也是未来的研究方向。

7. 结论

变分高斯Copula推断是一种强大的多元变分推断方法。而其中对单变量边缘后验分布的精确建模是其性能的关键。传统的参数化方法在捕捉复杂边缘形状时存在局限性。本文深入探讨了基于Bernstein多项式的非参数转换在描述单变量边缘后验时的充分灵活性。通过将单调非降转换函数建模为基于Bernstein多项式的函数,该方法能够灵活地将简单的基准分布转换为具有任意复杂形状的边缘分布,从而克服了参数化方法的限制。这种非参数转换具有强大的逼近能力、易于实施单调性约束、与变分推断框架兼容以及控制复杂度的能力。在实际应用中,它可以带来更准确的后验近似、增强模型的鲁棒性、减少信息损失,并适用于各种复杂的贝叶斯模型。尽管存在一些挑战,基于Bernstein多项式的非参数转换在变分高斯Copula推断中展现出巨大的潜力,为精确和灵活的多元后验推断开辟了新的道路,并为未来的研究提供了广阔的空间。

⛳️ 运行结果

图片

图片

图片

图片

图片

🔗 参考文献

[1] 邵红萍.基于Copula的商业银行组合信用风险研究[D].西南财经大学,2014.

[2] 杨超,黄达,张永兴.基于Copula理论岩体质量Q值及波速与变形模量多变量相关性研究[J].岩石力学与工程学报, 2014, 33(3):507-513.DOI:10.3969/j.issn.1000-6915.2014.03.008.

[3] 王辉,梁俊豪.基于动态因子Copula模型的我国银行系统性风险度量[J].金融研究, 2020(11):18.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值