✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本方案将 SHAP 分析、贝叶斯优化 BP 神经网络、K 折交叉验证、相关性分析及孤立森林异常值处理等方法相结合,应用于风险评价与预测领域。通过孤立森林处理异常值,利用相关性分析筛选指标,借助贝叶斯优化提升 BP 神经网络预测性能,运用 K 折交叉验证评估模型稳定性,最后通过 SHAP 分析解释模型决策依据,为风险评价与预测提供更科学、准确、可解释的解决方案。
一、引言
在风险评价与预测中,单一方法往往存在局限性。例如,传统 BP 神经网络在训练过程中易陷入局部最优,且缺乏对模型决策的解释性。本方案融合多种方法,旨在发挥各自优势,提高风险评价与预测的准确性、可靠性和可解释性,以更好地应对复杂多变的风险场景。
二、方法原理概述
(一)SHAP 分析(SHapley Additive exPlanations)
SHAP 值基于合作博弈论,用于解释机器学习模型中每个特征对预测结果的贡献。通过计算每个特征在所有可能的特征组合下对预测结果的边际贡献,并取平均值,得到该特征的 SHAP 值。SHAP 值为正表示该特征使预测结果增大,为负则使预测结果减小,绝对值越大说明该特征对预测结果的影响越大。
(二)贝叶斯优化 BP 神经网络
BP 神经网络是一种多层前馈神经网络,通过反向传播算法调整网络权重以最小化损失函数。贝叶斯优化则利用贝叶斯定理构建目标函数的概率模型,通过采集函数选择下一个评估点,在参数空间中高效搜索最优的 BP 神经网络超参数(如学习率、隐藏层节点数等),从而提高 BP 神经网络的预测性能和泛化能力。
(三)K 折交叉验证
将原始数据集划分为 K 个大小相似的子集,每次使用其中 K - 1 个子集作为训练集,剩余 1 个子集作为测试集,重复 K 次,使得每个子集都有机会作为测试集。最终的模型性能指标为 K 次测试结果的平均值,这种方法能够更全面地评估模型的泛化能力和稳定性。
(四)相关性分析
通过计算相关系数(如皮尔逊相关系数),衡量变量之间线性关系的强度和方向。在风险评价中,可用于筛选与风险指标相关性较高的特征,去除冗余或不相关的指标,简化模型结构,提高模型效率。
(五)孤立森林
孤立森林是一种基于异常检测的无监督学习算法。它通过构建多棵孤立树,对每个样本进行孤立操作。由于异常样本在数据空间中较为稀疏,通常会更快地被孤立,因此可根据样本在孤立树中的路径长度判断其是否为异常值。
三、融合方法流程
(一)数据预处理
- 异常值处理:使用孤立森林算法对原始数据进行异常值检测和处理。将被判定为异常的样本标记并根据实际情况进行删除或修正,确保数据的可靠性。
- 相关性分析:计算各风险评价指标之间以及指标与风险等级之间的相关系数,设定阈值(如绝对值大于 0.3),保留相关性较高的指标,剔除相关性较低的冗余指标,形成优化后的指标体系。
(二)模型构建与优化
- 贝叶斯优化 BP 神经网络:利用贝叶斯优化算法搜索 BP 神经网络的最优超参数,包括学习率、隐藏层数量、每层隐藏层节点数等。在优化过程中,以 K 折交叉验证得到的平均误差作为目标函数,评估不同超参数组合下 BP 神经网络的性能,选择使目标函数最小的超参数组合构建最终的 BP 神经网络模型。
- 模型训练与评估:使用优化后的超参数,基于处理后的数据对 BP 神经网络进行训练。训练完成后,再次通过 K 折交叉验证对模型进行全面评估,计算准确率、均方误差等性能指标,判断模型是否满足风险评价与预测的需求。
(三)模型解释与新数据预测
- SHAP 分析:对训练好的 BP 神经网络模型进行 SHAP 分析,计算每个输入特征的 SHAP 值。通过可视化 SHAP 值(如 SHAP 依赖图、SHAP 汇总图等),直观展示各特征对风险预测结果的影响程度和方向,为风险评价提供决策依据。
- 新数据预测:将新收集的风险数据经过与训练数据相同的预处理步骤后,输入到训练好的 BP 神经网络模型中,进行风险等级预测,为实际决策提供参考。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 黄书林,韩印.基于孤立森林算法贝叶斯优化的Bi-LSTM交通流量预测[J].建模与仿真, 2024, 13(4):4205-4216.DOI:10.12677/mos.2024.134381.
[2] 朱宇坤,喻聪,张梯华,等.基于大容量样本挖掘及贝叶斯堆栈泛化集成算法的电站锅炉NO_(x)稳态建模[J].热力发电, 2022, 51(8):10.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇