复数的几何意义

复数的确切意义

为了解出二次、三次甚至更高次方程,数学家引入了虚数单位 i \rm i i,定义 i 2 = − 1 \mathrm{i}^2=-1 i2=1。但是,他们对于那些含有虚数的表达式的确切意义是感到困惑的。当然,现在可能也有不少同学很难接受虚数,因为它们确确实实是不存在的。

“虚数”这一名称就说明, i \rm i i 曾经被认为是不存在的数字。

后来,复数的运算有了简单的几何解释。把复数 z = a + b i z=a+b\rm i z=a+bi 用复平面上的点 ( a , b ) (a,b) (a,b) 表示, z z z 的实部就是该点的横坐标,而虚部就是纵坐标。引入了复平面后,虚数就像之前所学的实数一样真实。形如 ( a ,   0 ) (a,\ 0) (a, 0) 的点表示实数 a + 0 i a+0\rm i a+0i,形如 ( 0 ,   b )   ( b ≠ 0 ) (0,\ b)\ (b\ne0) (0, b) (b=0) 的点表示纯虚数 0 + b i 0+b\rm i 0+bi

1. 复数的几何形式

复数 z = a + b i z=a+b\rm i z=a+bi 既可以用复平面上的点 Z ( a ,   b ) Z(a,\ b) Z(a, b) 来表示,也可以用由原点出发的向量 O Z → \overrightarrow{OZ} OZ 来表示。这两种形式就是复数的几何形式

共轭复数

在复平面上,有一个点和 Z ( a ,   b ) Z(a,\ b) Z(a, b) 有比较紧密的联系,就是复数 z = a + b i z=a+b\rm i z=a+bi共轭复数 z ‾ = a − b i \overline{z}=a-b\rm i z=abi

在这里插入图片描述
共轭复数的运算会有很多特别的性质,例如: ∣ O Z → ∣ 2 = z ⋅ z ‾ \big|\overrightarrow{OZ}\big|^2=z\cdot \overline{z} OZ 2=zz

推导过程: ∣ O Z → ∣ 2 = a 2 + b 2 = ( a + b i ) ( a − b i ) = z ⋅ z ‾ . \big|\overrightarrow{OZ}\big|^2=a^2+b^2=(a+b\mathrm{i})(a-b\mathrm{i})=z\cdot\overline{z}. OZ 2=a2+b2=(a+bi)(abi)=zz.
这条性质比较常用,也算是一个隐含的条件。在解题时巧妙运用这个性质,可以减少一定的计算量。

这里再列举一些比较常用的:

  1. z + z ‾ = 2 R e ( z ) z+\overline{z}=2\mathrm{Re}(z) z+z=2Re(z) z − z ‾ = 2 I m ( z ) z-\overline{z}=2\mathrm{Im}(z) zz=2Im(z)
  2. z ‾ ‾ = z \overline{\overline{z}}=z z=z
  3. z 1 ± z 2 ‾ = z 1 ‾ ± z 2 ‾ \overline{z_1\pm z_2}=\overline{z_1}\pm\overline{z_2} z1±z2=z1±z2
  4. z 1 z 2 ‾ = z 1 ‾ ⋅ z 2 ‾ \overline{z_1z_2}=\overline{z_1}\cdot\overline{z_2} z1z2=z1z2
  5. ( z 1 z 2 ) ‾ = z 1 ‾ z 2 ‾ ( z 2 ≠ 0 ) \overline{\Big(\dfrac{z_1}{z_2}\Big)}=\dfrac{\overline{z_1}}{\overline{z_2}}(z_2\ne0) (z2z1)=z2z1(z2=0)

和差积商的共轭等于共轭的和差积商,大家可以自行推导。

  1. z z z 是实数的充要条件是 z ‾ = z \overline{z}=z z=z z z z 是纯虚数的充要条件是 z = − z ‾   ( z ≠ 0 ) z=-\overline{z}\ (z\ne0) z=z (z=0)
复数的模

O Z → \overrightarrow{OZ} OZ 的模长 a 2 + b 2 \sqrt{a^2+b^2} a2+b2 就是复数 z = a + b i z=a+b\rm i z=a+bi,用符号 ∣ z ∣ |z| z 表示。

复数的模也有很多性质。

  1. ∣ z ∣ ≥ ∣ R e ( z ) ∣ |z|\ge|\mathrm{Re}(z)| zRe(z) ∣ z ∣ ≥ ∣ I m ( z ) ∣ |z|\ge|\mathrm{Im}(z)| zIm(z)
  2. ∣ z 1 z 2 ⋯ z n ∣ = ∣ z 1 ∣ ⋅ ∣ z 2 ∣ ⋯ ∣ z n ∣ |z_1z_2\cdots z_n|=|z_1|\cdot|z_2|\cdots|z_n| z1z2zn=z1z2zn
  3. ∣ z 1 z 2 ∣ = ∣ z 1 ∣ ∣ z 2 ∣   ( z 2 ≠ 0 ) \bigg|\dfrac{z_1}{z_2}\bigg|=\dfrac{|z_1|}{|z_2|}\ (z_2\ne0) z2z1 =z2z1 (z2=0)
  4. ∣ ∣ z 1 ∣ − ∣ z 2 ∣ ∣ ≤ ∣ z 1 + z 2 ∣ ||z_1|-|z_2||\le|z_1+z_2| ∣∣z1z2∣∣z1+z2,与复数 z 1 z_1 z1 z 2 z_2 z2 对应的向量 O Z 1 → \overrightarrow{OZ_1} OZ1 O Z 2 → \overrightarrow{OZ_2} OZ2 反向时等号成立。
  5. ∣ z 1 + z 2 + ⋯ + z n ∣ ≤ ∣ z 1 ∣ + ∣ z 2 ∣ + ⋯ + ∣ z n ∣ |z_1+z_2+\cdots+z_n|\le|z_1|+|z_2|+\cdots+|z_n| z1+z2++znz1+z2++zn,与复数 z 1 ,   z 2 ,   ⋯   ,   z n z_1,\ z_2, \ \cdots,\ z_n z1, z2, , zn 对应的向量 O Z 1 → ,   O Z 2 → ,   ⋯   ,   O Z n → \overrightarrow{OZ_1},\ \overrightarrow{OZ_2},\ \cdots,\ \overrightarrow{OZ_n} OZ1 , OZ2 , , OZn 同向时取等号。

复数和的模不超过模的和,这其实是向量的平行四边形法则,也就是说,三角形两边之和大于第三边。但是,有种特殊情况就是所有的向量都是一个方向,这种情况就会取到等号。
复数的减法就对应着向量的三角形法则。

复数加减法
复数的几何意义可以从向量的世界里找到答案。两个向量的和对应着平行四边形的对角线,两个向量的差对应着三角形的第三边,那我们再看看乘法会是什么样的。


2. 复数的三角形式

上面说了那么多,可能大家会很好奇复数的模的性质2是怎么来的。为什么运算中乘积的模等于模的乘积?想要解开这个谜,那就不得不提复数的三角形式

辐角和辐角主值

回归复平面,复数 z z z 可以用它所对应的向量 O Z → \overrightarrow{OZ} OZ 来表示,直线 O Z OZ OZ x x x 轴正半轴的交角就叫做辐角,之所以不说是直线 O Z OZ OZ x x x 轴的夹角,因为夹角限制了范围 [ 0 ∘ , 18 0 ∘ ) [0^{\circ},180^{\circ}) [0,180),但是辐角是没有限制的,并且可正可负。在此提一下,辐角是并不是唯一确定的,因为相差 36 0 ∘ 360^{\circ} 360 的整数倍并不会影响终边的位置。
在无数多个辐角中,有一个特殊的辐角 θ 0 \theta_0 θ0 满足 − π < θ 0 < π -\pi<\theta_0<\pi π<θ0<π,我们称 θ 0 \theta_0 θ0 为复数 z z z 的主辐角,记作 arg ⁡ z \arg z argz

辐角可以根据复数的代数形式来计算,对于 z = a + b i z=a+b\rm i z=a+bi,我们可以求出 arg ⁡ z = arctan ⁡ b a . \arg z=\arctan\dfrac{b}{a}. argz=arctanab.

复数的三角形式,就和辐角有着联系。将 ∣ z ∣ |z| z 记为 r r r,再结合辐角 θ \theta θ,我们就可以写出复数的三角形式 z = r ( cos ⁡ θ + i sin ⁡ θ ) z=r(\cos\theta+\rm i\sin\theta) z=r(cosθ+isinθ)

复数的三角形式的乘积

下面,我们就可以一起探求两个三角形式的复数的乘积了。

z 1 = r 1 ( cos ⁡ θ 1 + i sin ⁡ θ 1 ) z_1=r_1(\cos\theta_1+\rm i\sin\theta_1) z1=r1(cosθ1+isinθ1) z 2 = r 2 ( cos ⁡ θ 2 + i sin ⁡ θ 2 ) z_2=r_2(\cos\theta_2+\rm i\sin\theta_2) z2=r2(cosθ2+isinθ2)
z 1 z 2 = r 1 r 2 ( cos ⁡ θ 1 + i sin ⁡ θ 1 ) ( cos ⁡ θ 2 + i sin ⁡ θ 2 ) z_1z_2=r_1r_2(\cos\theta_1+\mathrm{i}\sin\theta_1)(\cos\theta_2+\rm i\sin\theta_2) z1z2=r1r2(cosθ1+isinθ1)(cosθ2+isinθ2)
  = r 1 r 2 [ ( cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 ) + i ( sin ⁡ θ 1 cos ⁡ θ 2 + cos ⁡ θ 1 sin ⁡ θ 2 ) ] \qquad\ =r_1r_2[(\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2)+\rm i(\sin\theta_1\cos\theta_2+\cos\theta_1\sin\theta_2)]  =r1r2[(cosθ1cosθ2sinθ1sinθ2)+i(sinθ1cosθ2+cosθ1sinθ2)]
再利用正余弦和角公式,就得到:
z 1 z 2 = r 1 r 2 [ cos ⁡ ( θ 1 + θ 2 ) + i sin ⁡ ( θ 1 + θ 2 ) ] z_1z_2=r_1r_2[\cos(\theta_1+\theta_2)+\rm i\sin(\theta_1+\theta_2)] z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]

复数乘法
这就是三角形式的复数乘法,是不是很简便?模长相乘,辐角相加,比代数形式的要好记吧。除法也是类似,模长相除,辐角相减就行。

至此我们就找到了复数相乘的几何意义。将 z 1 z_1 z1 的模长变成原来的 ∣ z 2 ∣ |z_2| z2 倍,并且旋转 θ 2 \theta_2 θ2,也就对应着放缩与旋转。

如果是两数乘积的特殊情况呢?当 z = z 1 = z 2 z=z_1=z_2 z=z1=z2 时, z 2 = r 2 ( cos ⁡ 2 θ + i sin ⁡ 2 θ ) z^2=r^2(\cos2\theta+\rm i\sin2\theta) z2=r2(cos2θ+isin2θ),再乘 z z z,就得到 z 3 = r 3 ( cos ⁡ 3 θ + i sin ⁡ 3 θ ) z^3=r^3(\cos3\theta+\rm i\sin3\theta) z3=r3(cos3θ+isin3θ)……
重复若干次,就有 z n = r n ( cos ⁡ n θ + i sin ⁡ n θ ) z^n=r^n(\cos n\theta+\mathrm{i}\sin n\theta) zn=rn(cosnθ+isinnθ).
特别地,如果 z z z 在单位圆上 ( ∣ z ∣ = 1 ) (|z|=1) (z=1),我们就能得到棣莫弗定理

棣莫弗定理,是法国数学家棣莫弗创立的公式。 z n = ( cos ⁡ n θ + i sin ⁡ n θ ) . z^n=(\cos n\theta+\mathrm{i}\sin n\theta). zn=(cosnθ+isinnθ).

相信大家已经能感觉到棣莫弗定理和单位圆有着十分密切的联系了,下篇文章,我们就要详细讲讲棣莫弗公式和单位根。


后话

好像课内也不要求掌握复数的三角式吧。但是,其实复数还有一些不同的形式。
指数形式: z = r e i θ z=re^{\rm i\theta} z=reiθ,应该是基于欧拉公式。
极坐标形式: z = r ∠ θ z=r\angle\theta z=rθ,不太了解,没学到(我初中)。

复数的奥秘远不止这些,留到下次再说。

参考:
辐角(数学术语) - 百度百科
复数 - 百度百科
复数(2)——复数的几何解释
《奥数教程(第七版)高中第二分册》

<think>嗯,用户想了解复数几何表示的意义和应用场景。首先,我需要回忆一下复数的基本几何表示方法,比如复平面、向量表示,还有极坐标形式。可能还要提到欧拉公式,把复数跟指数函数联系起来。然后,意义方面,应该包括几何解释如何简化运算,比如加减乘除的向量操作,还有旋转和伸缩的几何意义。应用场景的话,常见的应该是在电气工程中的交流电路分析,信号处理中的傅里叶变换,还有控制理论中的频域分析。另外,量子力学的态向量可能也是一个点。 接下来要确认是否需要搜索最新的应用案例,或者有没有什么遗漏的重要应用。比如在计算机图形学中,复数可能用于旋转操作,或者流体动力学中的势流理论。不过不确定这些是否需要详细展开。可能用户需要具体的例子,所以得找一些实际的场景,比如用复数表示二维平面上的变换,或者解决几何问题的方法。 还要注意用户的问题提到数学中的应用场景,可能需要强调复分析中的积分、保角映射等概念。几何表示的意义可能涉及直观理解复杂函数的行为,比如映射如何变形空间。另外,复数几何表示对理解分形,如曼德博集合,可能有帮助,但这是否属于应用场景呢? 需要检查是否有权威来源或教科书中的标准解释,确保回答的准确性。可能还要区分不同表示法的优势,比如极坐标形式在乘除运算中的简便性。应用场景部分可能需要分点,比如物理、工程、计算机图形学等不同领域。还要注意用户可能需要实际操作的例子,比如如何用复数进行旋转计算,或者解决几何问题的步骤。 最后,要确保回答结构符合用户的要求:多个方法或步骤,换行分隔,避免使用步骤词汇。同时,相关问题部分需要基于原问题,可能涉及复数在具体领域中的应用,或者与其他数学概念的联系,比如四元数、向量空间等。</think>复数几何表示为数学分析和工程应用提供了直观的图形化工具。以下从几何意义和应用场景两方面展开说明: **几何意义** 1. **坐标映射**:复数 $z=a+bi$ 在复平面上对应点 $(a,b)$,将抽象代数运算转化为二维平面操作 2. **向量特性**:复数加减对应向量的平移运算,模长 $|z|=\sqrt{a^2+b^2}$ 表示向量长度 3. **旋转操作**:复数乘法 $z_1 \cdot z_2$ 对应向量旋转叠加,角度由 $\theta = \arg(z_1) + \arg(z_2)$ 确定 4. **伸缩变换**:复数模长乘积 $|z_1||z_2|$ 体现向量长度的缩放效应 **应用场景** **电路分析**:交流电路阻抗用复数表示 $Z=R+jX$,通过几何相位图分析电压/电流关系 ```python # 计算串联阻抗 Z1 = 50 + 30j # 阻抗1 Z2 = 20 - 15j # 阻抗2 Z_total = Z1 + Z2 print(f"总阻抗:{Z_total} Ω") ``` **信号处理**:傅里叶变换将时域信号映射到复频域,复数相位谱揭示信号时序特征 $$ X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt $$ **机器人控制**:平面运动轨迹用复数描述,旋转矩阵等价于乘以 $e^{j\theta}$ ```matlab % 坐标系旋转45度 theta = pi/4; original_point = 3 + 2i; rotated_point = original_point * exp(1i*theta); ``` **量子力学**:波函数用复向量表示,希尔伯特空间中的态矢量包含概率幅和相位信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值