ICML 2023 | 一个模型解决30+任务 阿里达摩院提出模块化多模态模型mPLUG-2

关注公众号,发现CV技术之美

近年来,视觉、语言和多模态预训练逐渐呈现出统一的趋势。对于多模态基础模型,我们希望其不仅能够处理多模态相关任务,还希望其在单模态任务上也具有优异的性能。然而,现有的多模态模型,往往不能很好的平衡模态协作(collaboration)和模态纠缠(entanglement)的问题,从而限制了在各种单模态及跨模态下游任务上的性能。

为了解决这一问题,阿里达摩院的研究者提出模块化的多模态基础模型mPLUG-2,能够处理文本、图像和视频等多种模态输入,在30+多模态及单模态任务上,相比以往采用同等数据和模型规模的方法取得了领先或相近的性能,并在VideoQA和VideoCaption等任务上,取得了超越Flamingo、VideoCoCa等超大规模模型的SOTA表现。

该工作已被机器学习顶级会议ICML 2023接收,此外,mPLUG-Owl 是阿⾥巴巴达摩院 mPLUG 系列的最新工作,延续了 mPLUG 系列的模块化训练思想,把 LLM 升级为一个多模态大模型,论文和代码地址如下:

d4bc94158606bcae1f11c2d058e2218b.png

论文地址:https://arxiv.org/pdf/2302.00402.pdf 

mPLUG-2地址https://github.com/X-PLUG/mPLUG-2 

mPLUG-Owl地址:https://github.com/X-PLUG/mPLUG-Owl

▌方法概览

近期,Transformer结构的成功应用,使得语言、视觉和多模态预训练呈现出大融合的趋势。以Flamingo为代表的多模态基础模型,为多模态数据共享单一的建模网络,并采用序列生成框架来统一多种任务和模态,以此来利用模态协作的信息。然而,由于不同模态涉及到的任务的巨大差异,这种策略将面临模态纠缠的问题,多个模态之间可能会相互干扰。以往的单模块基础模型,难以平衡模态协作的收益和模态纠缠的干扰,从而限制了下游任务上的性能。

65041f5ad0fd124bbc0379bcd6e24aab.png

为此,阿里达摩院研究团队在mPLUG-2这项工作中,引入了一种新的多模态基础模型的统一范式。如图所示,mPLUG-2采用模块化的网络设计,来平衡模态协作和模态纠缠。研究者设计了特定的共享功能模块以鼓励模态协作,同时保留特定于模态的模块以缓解模态纠缠问题。基于模块化的设计,不同的模块可以灵活地选取和组合,以适应不同的单模态及多模态的理解和生成任务。下表展示了mPLUG-2支持的下游任务,可以看到相比以往的方法,mPLUG-2能够处理更多类型的跨文本、图像和视频的下游任务。

78cdda5d96cbe6895e50102f4b04333f.png

▌模型细节

1b3cf3170c02db6511c40a17df71f106.png

如图所示,mPLUG-2的主体结构包含文本编码器视觉编码器通用层模块多模态融合模块以及一个共享的解码器模块。作者首先利用文本和视觉编码器,分别从文本、图像/视频中提取相应模态的信息,再通过参数共享的通用层模块(Universal Layers Module)将不同模态映射到共享的语义空间中。对于多模态任务,融合模块(Fusion Module)被用来产生视觉-语言融合的跨模态表征。最终,这些单模态和跨模态表征被送入一个共享的解码器模块中,以应对不同种类的生成任务。下面对作者设计的双视觉编码器和通用层模块做详细的介绍。

(1)双视觉编码器 

为了提取图像、视频等视觉模态的信息,作者提出双视觉编码器。为了缓解视频时空建模中序列长度过大导致的学习困难问题,将视频分解为空间和时间表示,如图(b)所示,利用Transformer的自注意力层和前馈层进行空间建模,并针对视频输入,提出一种新颖的局部时序建模模块。该模块将视频特征在通道维度分组,对不同组的特征应用不同的时序建模参数(如时序卷积),从而在不同的表征子空间中学习更为丰富的时序特征。此外,空间和时间信息的解耦,使得双视觉编码器能够实现图像和视频的参数共享,从而更加高效地学习空间和时间表征。 

(2)通用层模块 

为了使模型能够从不同模态数据的协作中受益,作者提出通用层模块使得视觉和语言模态共享语义空间。如图(c)所示,为了降低通用层的计算复杂度,作者设置固定数量的视觉query,并将来自双视觉编码器的图像或视频特征作为交叉注意力层的输入。在每个通用层中,视觉query和文本特征通过共享参数的自注意力层来对齐语义,然后视觉query通过交叉注意力从原始视觉特征中提取视觉信息,之后视觉query和文本特征通过共享参数的前馈层进行特征变换。训练阶段,mPLUG-2使用掩码语言恢复(MLM)、视觉-文本对比学习(VLC)和视觉-文本匹配(VLM)等预训练任务,并利用基于指令的语言模型损失来统一各种生成任务。推理阶段,mPLUG-2的模块化设计,使其能够针对不同的单模态和跨模态任务选择不同的模块组合。

▌实验结果

▼多模态任务

实验结果表明,mPLUG-2在视频、图像的跨模态检索、问答、描述及视觉定位等多种多模态任务上,相比采用相近预训练数据和模型规模的方法,取得了SOTA性能。

ba00087ed5cd540f55ce28085a3bb67e.jpeg

9345174b63741c397776227ff52b4333.jpeg

1ca7b67e628dcd0ffbe3cc89faed2b13.jpeg

40225bfe6cccf0ac602d0a605fd8c277.jpeg

▼语言任务

相比单模态的预训练语言模型和其他多模态预训练模型,mPLUG-2在GLUE benchmark上取得了有竞争力的表现。这一实验结果验证了利用通用层模块进行模态协作的有效性。

4939e21abd59b681a6a4e0c0f484536d.jpeg

▼视觉任务

此外,在视频行为识别、图像分类等纯视觉任务上,mPLUG-2也取得了有竞争力的结果。

fa9f67b7ff63c44129f03e85c929dded.jpeg

e0e00d95a544ac5d7f5d772ed5d4078c.jpeg

e5413db97d29fab3ee372923d9b7e7b0.jpeg

END

加入「计算机视觉交流群👇备注:CV

f49007f8c96bd8368a9870a33efebc5d.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值