雅可比行列式与积分

雅可比行列式与积分

雅可比行列式与积分的关系主要体现在它为积分在不同变量间的转换提供了关键的系数依据,保证了积分在变量替换前后的等价性。

从雅可比矩阵一节中,我们知道非线性变换在局部空间上可以看作是线性的,非线性微元与线性微元的变换矩阵就是雅可比矩阵。从二维角度雅可比矩阵的行列式的绝对值就是非线性微元与线性微元的缩放值。

雅可比行列式

雅可比行列式与二重积分关系密切,以下从多个角度进行详细阐述,并给出具体公式及示例:

变量变换中的雅可比行列式

设存在从变量 ( u , v ) (u, v) (u,v)到变量 ( x , y ) (x, y) (x,y)的变换 x = x ( u , v ) x = x(u, v) x=x(u,v) y = y ( u , v ) y = y(u, v) y=y(u,v),且 x ( u , v ) x(u, v) x(u,v) y ( u , v ) y(u, v) y(u,v)具有一阶连续偏导数,那么雅可比行列式J定义为:

J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ = ∂ x ∂ u ∂ y ∂ v − ∂ x ∂ v ∂ y ∂ u J=\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix}\frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}\end{vmatrix} \\ =\frac{\partial x}{\partial u}\frac{\partial y}{\partial v}-\frac{\partial x}{\partial v}\frac{\partial y}{\partial u} J=(u,v)(x,y)=uxuyvxvy=uxvyvxuy

二重积分中的变量替换公式

对于二重积分 ∫ D f ( x , y ) d x d y \int_D f(x,y)dxdy Df(x,y)dxdy,通过变量变换 x = x ( u , v ) x = x(u, v) x=x(u,v) y = y ( u , v ) y = y(u, v) y=y(u,v),积分区域 D D D x y xy xy平面上,对应到 u v uv uv平面上的区域为 D ′ D' D,则有:

∫ D f ( x , y ) d x d y = ∫ D ′ f ( x ( u , v ) , y ( u , v ) ) ∣ J ∣ d u d v \int_D f(x,y)dxdy\\=\int_{D'} f(x(u,v),y(u,v)) \vert J\vert dudv Df(x,y)dxdy=Df(x(u,v),y(u,v))Jdudv

其中 ∣ J ∣ \vert J\vert J表示雅可比行列式 J J J的绝对值。这意味着在进行变量替换时,不仅要将被积函数中的 x x x y y y u u u v v v表示,还要将面积微元 d x d y dxdy dxdy替换为 ∣ J ∣ d u d v \vert J\vert dudv Jdudv,这样才能保证积分在变量替换前后的数值相等。

公式推导思路

从微元的角度来看,在 x y xy xy平面上,面积微元 d x d y dxdy dxdy可以看作是由向量 i ⃗ d x 和 j ⃗ d y \vec{i}dx和\vec{j}dy i dxj dy所围成的小矩形的面积。在变量变换后,在 u v uv uv平面上,对应的向量变为

a ⃗ = ∂ x ∂ u i ⃗ + ∂ y ∂ u j ⃗ \vec{a}=\frac{\partial x}{\partial u}\vec{i}+\frac{\partial y}{\partial u}\vec{j} a =uxi +uyj b ⃗ = ∂ x ∂ v i ⃗ + ∂ y ∂ v j ⃗ \vec{b}=\frac{\partial x}{\partial v}\vec{i}+\frac{\partial y}{\partial v}\vec{j} b =vxi +vyj ,这两个向量所围成的平行四边形的面积为 ∣ a ⃗ × b ⃗ ∣ \vert\vec{a}\times\vec{b}\vert a ×b ,经过计算可得 ∣ a ⃗ × b ⃗ ∣ = ∣ J ∣ d u d v \vert\vec{a}\times\vec{b}\vert=\vert J\vert dudv a ×b =Jdudv,所以 d x d y = ∣ J ∣ d u d v dxdy=\vert J\vert dudv dxdy=Jdudv,从而得到二重积分的变量替换公式。

应用示例

计算 ∫ D ( x + y ) 2 d x d y \int_D (x + y)^2dxdy D(x+y)2dxdy,其中 D D D是由 x + y = 1 x + y = 1 x+y=1 x + y = 3 x + y = 3 x+y=3 x − y = − 1 x - y = -1 xy=1 x − y = 1 x - y = 1 xy=1所围成的区域。
u = x + y u = x + y u=x+y v = x − y v = x - y v=xy,则可解得 x = u + v 2 x=\frac{u + v}{2} x=2u+v y = u − v 2 y=\frac{u - v}{2} y=2uv
计算雅可比行列式

J = ∂ ( x , y ) ∂ ( u , v ) = ∣ 1 2 1 2 1 2 − 1 2 ∣ = − 1 2 J=\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{vmatrix}=-\frac{1}{2} J=(u,v)(x,y)=21212121=21

∣ J ∣ = 1 2 \vert J\vert=\frac{1}{2} J=21

原积分区域 D D D u v uv uv平面上变为 D ′ D' D 1 ≤ u ≤ 3 1\leq u\leq3 1u3 − 1 ≤ v ≤ 1 -1\leq v\leq1 1v1
原积分

∫ D ( x + y ) 2 d x d y = ∬ D ′ u 2 ⋅ 1 2 d u d v = 1 2 ∫ − 1 1 d v ∫ 1 3 u 2 d u = 26 3 \int_D (x + y)^2dxdy=\iint_{D'} u^2\cdot\frac{1}{2}dudv\\ =\frac{1}{2}\int_{-1}^{1}dv\int_{1}^{3}u^2du=\frac{26}{3} D(x+y)2dxdy=Du221dudv=2111dv13u2du=326

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值