雅可比行列式与积分
雅可比行列式与积分的关系主要体现在它为积分在不同变量间的转换提供了关键的系数依据,保证了积分在变量替换前后的等价性。
从雅可比矩阵一节中,我们知道非线性变换在局部空间上可以看作是线性的,非线性微元与线性微元的变换矩阵就是雅可比矩阵。从二维角度雅可比矩阵的行列式的绝对值就是非线性微元与线性微元的缩放值。
雅可比行列式与二重积分关系密切,以下从多个角度进行详细阐述,并给出具体公式及示例:
变量变换中的雅可比行列式
设存在从变量 ( u , v ) (u, v) (u,v)到变量 ( x , y ) (x, y) (x,y)的变换 x = x ( u , v ) x = x(u, v) x=x(u,v), y = y ( u , v ) y = y(u, v) y=y(u,v),且 x ( u , v ) x(u, v) x(u,v), y ( u , v ) y(u, v) y(u,v)具有一阶连续偏导数,那么雅可比行列式J定义为:
J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ = ∂ x ∂ u ∂ y ∂ v − ∂ x ∂ v ∂ y ∂ u J=\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix}\frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}\end{vmatrix} \\ =\frac{\partial x}{\partial u}\frac{\partial y}{\partial v}-\frac{\partial x}{\partial v}\frac{\partial y}{\partial u} J=∂(u,v)∂(x,y)=∣∣∣∣∂u∂x∂u∂y∂v∂x∂v∂y∣∣∣∣=∂u∂x∂v∂y−∂v∂x∂u∂y
二重积分中的变量替换公式
对于二重积分 ∫ D f ( x , y ) d x d y \int_D f(x,y)dxdy ∫Df(x,y)dxdy,通过变量变换 x = x ( u , v ) x = x(u, v) x=x(u,v), y = y ( u , v ) y = y(u, v) y=y(u,v),积分区域 D D D在 x y xy xy平面上,对应到 u v uv uv平面上的区域为 D ′ D' D′,则有:
∫ D f ( x , y ) d x d y = ∫ D ′ f ( x ( u , v ) , y ( u , v ) ) ∣ J ∣ d u d v \int_D f(x,y)dxdy\\=\int_{D'} f(x(u,v),y(u,v)) \vert J\vert dudv ∫Df(x,y)dxdy=∫D′f(x(u,v),y(u,v))∣J∣dudv
其中 ∣ J ∣ \vert J\vert ∣J∣表示雅可比行列式 J J J的绝对值。这意味着在进行变量替换时,不仅要将被积函数中的 x x x, y y y用 u u u, v v v表示,还要将面积微元 d x d y dxdy dxdy替换为 ∣ J ∣ d u d v \vert J\vert dudv ∣J∣dudv,这样才能保证积分在变量替换前后的数值相等。
公式推导思路
从微元的角度来看,在 x y xy xy平面上,面积微元 d x d y dxdy dxdy可以看作是由向量 i ⃗ d x 和 j ⃗ d y \vec{i}dx和\vec{j}dy idx和jdy所围成的小矩形的面积。在变量变换后,在 u v uv uv平面上,对应的向量变为
a ⃗ = ∂ x ∂ u i ⃗ + ∂ y ∂ u j ⃗ \vec{a}=\frac{\partial x}{\partial u}\vec{i}+\frac{\partial y}{\partial u}\vec{j} a=∂u∂xi+∂u∂yj和 b ⃗ = ∂ x ∂ v i ⃗ + ∂ y ∂ v j ⃗ \vec{b}=\frac{\partial x}{\partial v}\vec{i}+\frac{\partial y}{\partial v}\vec{j} b=∂v∂xi+∂v∂yj,这两个向量所围成的平行四边形的面积为 ∣ a ⃗ × b ⃗ ∣ \vert\vec{a}\times\vec{b}\vert ∣a×b∣,经过计算可得 ∣ a ⃗ × b ⃗ ∣ = ∣ J ∣ d u d v \vert\vec{a}\times\vec{b}\vert=\vert J\vert dudv ∣a×b∣=∣J∣dudv,所以 d x d y = ∣ J ∣ d u d v dxdy=\vert J\vert dudv dxdy=∣J∣dudv,从而得到二重积分的变量替换公式。
应用示例
计算
∫
D
(
x
+
y
)
2
d
x
d
y
\int_D (x + y)^2dxdy
∫D(x+y)2dxdy,其中
D
D
D是由
x
+
y
=
1
x + y = 1
x+y=1,
x
+
y
=
3
x + y = 3
x+y=3,
x
−
y
=
−
1
x - y = -1
x−y=−1,
x
−
y
=
1
x - y = 1
x−y=1所围成的区域。
令
u
=
x
+
y
u = x + y
u=x+y,
v
=
x
−
y
v = x - y
v=x−y,则可解得
x
=
u
+
v
2
x=\frac{u + v}{2}
x=2u+v,
y
=
u
−
v
2
y=\frac{u - v}{2}
y=2u−v。
计算雅可比行列式
J = ∂ ( x , y ) ∂ ( u , v ) = ∣ 1 2 1 2 1 2 − 1 2 ∣ = − 1 2 J=\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{vmatrix}=-\frac{1}{2} J=∂(u,v)∂(x,y)=∣∣∣∣212121−21∣∣∣∣=−21,
则 ∣ J ∣ = 1 2 \vert J\vert=\frac{1}{2} ∣J∣=21。
原积分区域
D
D
D在
u
v
uv
uv平面上变为
D
′
D'
D′:
1
≤
u
≤
3
1\leq u\leq3
1≤u≤3,
−
1
≤
v
≤
1
-1\leq v\leq1
−1≤v≤1。
原积分
∫ D ( x + y ) 2 d x d y = ∬ D ′ u 2 ⋅ 1 2 d u d v = 1 2 ∫ − 1 1 d v ∫ 1 3 u 2 d u = 26 3 \int_D (x + y)^2dxdy=\iint_{D'} u^2\cdot\frac{1}{2}dudv\\ =\frac{1}{2}\int_{-1}^{1}dv\int_{1}^{3}u^2du=\frac{26}{3} ∫D(x+y)2dxdy=∬D′u2⋅21dudv=21∫−11dv∫13u2du=326