YOLOv8改进 | 融合BiFPN与RepViT提升目标检测性能【YOLOv8】

本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!

专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html

YOLOv8改进 | 融合BiFPN与RepViT提升目标检测性能【YOLOv8】

在计算机视觉领域,YOLO系列(You Only Look Once)目标检测算法以其快速和高效的性能受到广泛关注。随着YOLOv8的推出,我们已经看到了其在目标检测任务中的显著改进。然而,YOLOv8仍然可以通过进一步的技术融合来提升性能。本篇文章将探讨如何将BiFPN(Bidirectional Feature Pyramid Network)和RepViT(Residual Positional Vision Transformer)这两种改进机制融合到YOLOv8中,以期获得更好的检测效果。

一、背景概述

1.1 YOLOv8概述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员Gloria

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值