本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!
专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html
文章目录
优化YOLOv8目标检测性能的创新损失函数-Quality Focal Loss(QFL)的应用与改进【YOLOv8】
在目标检测任务中,损失函数的选择对模型的准确性和泛化能力有着极为重要的影响。随着YOLOv8的广泛应用和模型性能的提升,对损失函数的进一步改进也显得尤为重要。本文将介绍一种优化YOLOv8的损失函数——Quality Focal Loss (QFL),并提供代码实例以及详细的修改步骤,帮助您深入了解如何将QFL整合到YOLOv8的训练流程中。
1. 背景介绍
1.1 YOLOv8架构概述
YOLOv8在YOLO系列中进一步优化了模型的结构和性能,采用了新的特征提取网络和自适应的an