SpireCV
文章平均质量分 90
SpireCV是一个专为智能无人系统打造的边缘实时感知SDK,主要功能包括相机/吊舱控制、视频保存与推流、目标探测识别与跟踪、边缘数据管理迭代等。旨在为移动机器人开发者提供高性能、高可靠、接口简洁、功能丰富的视觉感知能力。
阿木实验室
阿木实验室致力于为移动机器人前沿技术的研发提供开源软硬件工具和教育解决方案,让研发更高效!请前往微信公众号搜索“阿木实验室”了解更多!
展开
-
C++结合OpenCV:图像的加法运算
其中,参数alpha和beta是src1和src2所对应的系数,它们的和可以等于1,也可以不等于1。● 使用加号运算符计算图像像素值的和时,将和大于255的值进行了取模处理,取模后大于255的这部分值变得更小了,导致本来应该更亮的像素点变得更暗了,相加所得的图像看起来并不自然。对于每个案例,它首先计算直接相加的结果,然后计算对256取模的结果,以验证规则的正确性。● 使用函数cv::add()计算图像像素值的和时,将和大于255的值处理为饱和值255。图像像素值相加后让图像的像素值增大了,图像整体变亮。原创 2024-01-15 17:06:15 · 1970 阅读 · 3 评论 -
C++结合OpenCV:图像的像素处理基础
图像是BGR格式的,所以第2个通道是R通道,会得到R通道内第0行第0列的位置所对应的值255。● img[0][0][0]:访问图像img第0行第0列第0个通道的像素值。图像是BGR格式的,所以第0个通道是B通道,会得到B通道内第0行第0列的位置所对应的值0。图像是BGR格式的,所以第1个通道是G通道,会得到G通道内第0行第0列的位置所对应的值0。图像是BGR格式的,得到的数值为[0,0,255]。● 语句img[0,3]访问的是img第0行第3列的像素点,需要注意的是,行序号、列序号都是从0开始的。原创 2024-01-12 11:24:22 · 1295 阅读 · 0 评论 -
C++结合OpenCV:图像的基本表示方法
相比二值图像和灰度图像,彩色图像是更常见的一类图像,它能表现更丰富的细节信息。例如,图1是一个字母A的图像,计算机在处理该图像时,会首先将其划分为一个个的小方块,每一个小方块就是一个独立的处理单位,称为像素点。以比较通俗的方式来解释就是,有三个油漆桶,分别装了红色、绿色、蓝色的油漆,我们分别从每个油漆桶中取容量为0~255个单位的不等量的油漆,将三种油漆混合就可以调配出一种新的颜色。一般情况下,在RGB色彩空间中,图像通道的顺序是R→G→B,即第1个通道是R通道,第2个通道是G通道,第3个通道是B通道。原创 2024-01-05 17:33:25 · 1198 阅读 · 0 评论 -
开源无人机搭载SpireCV视觉套件,实现电诈园区视觉识别实战模拟
本实验利用无人机搭载SpireCV视觉套件对电诈园区的人员及房屋情况进行智能识别。原创 2023-12-29 16:38:49 · 600 阅读 · 0 评论 -
C++结合OpenCV:掌握图像基础与处理
本文详细介绍了使用 OpenCV4 进行图像处理的基础知识和操作。内容包括图像的基础概念、色彩空间理解、以及如何在 C++ 中进行图像读取、显示和基础操作。在计算机视觉中,图像通常表示为一个二维或三维的数组。二维数组表示灰度图像,其中每个元素代表一个像素的亮度。三维数组表示彩色图像,通常使用 RGB(红、绿、蓝)色彩模型,如图1。图1 RGB色彩模型。原创 2023-12-21 16:17:40 · 1707 阅读 · 0 评论 -
SpireCV如何利用G1吊舱进行点击跟踪
SpireCV-SDK是一个专为智能无人系统打造的边缘实时感知SDK库。该库能够控制无人机的相机和吊舱,包括拍照、录像、推流等功能,并可以保存视频和进行推流。此外,SpireCV-SDK还集成了目标检测、识别与跟踪功能,以实现更智能的无人系统控制。本文将详细介绍如何利用SpireCV进行吊舱控制,并提供相关算法原理及操作步骤。原创 2023-12-01 17:59:12 · 1192 阅读 · 0 评论 -
揭秘!SpireCV如何实现低延时推流、视频保存!
1)软件编解码:其优势在于灵活性、低成本和可定制性,能够适应不同的视频编码格式和算法,并且不需要额外的硬件设备,可以根据需求进行定制和扩展。在无人机上则是通过搭载摄像头或录像设备,通过无线网络将实时拍摄到的视频数据传输到地面站或其他终端设备,使操作人员能够实时监视无人机所处位置的环境,并在远程地点观看无人机飞行状态和所拍摄到的实时画面。鉴于无人机对低延时推流、画面高质量的需求,SpireCV首先采用硬件编解码的方式实现图像流的编码,其次使用RTSP协议实现图像流在网络中的传输。原创 2023-11-24 10:28:04 · 590 阅读 · 0 评论 -
一文教你如何利用SpireCV进行吊舱控制,实现目标检测及跟踪
在不同的吊舱之间,姿态的表示方式有所差异,因此我们对其进行了统一。采用欧拉角的方式表示吊舱的姿态信息,当视线与镜头方向相同时,定义如下:roll:横滚。逆时针为正。pitch:俯仰。向下为正。yaw:偏航。向左为正。原创 2023-11-08 10:32:00 · 506 阅读 · 0 评论 -
SpireCV如何利用TensorRT加速?
简单思路:在训练平台使用PyTorch框架训练完检测器模型后,需要先将PyTorch模型(.pt模型)转换为TensorRT模型(.wts模型),再在实际运行平台将.wts模型转为TensorRT的.engine文件,使用TensorRT引擎进行推理。例如,对于常见的卷积神经网络结构,TensorRT可以将其中的卷积、偏置和激活函数(如ReLU)合并为一个层,同时通过重排卷积核的顺序,以便在计算时利用输入数据的局部性进行计算。例如将下方图1所示的常见的Inception结构重构为图2所示的网络结构。原创 2023-11-02 19:19:38 · 251 阅读 · 0 评论 -
【全新开源项目】专为智能无人系统打造的边缘实时感知 SDK 库 SpireCV 正式上架
移动机器人的视觉感知系统,以往常用的是诸如OpenCV和一些深度学习的视觉库。然而这类大而全的视觉库,很少针对移动机器人进行优化(尤其是针对无人机),也不会针对硬件进行相关的优化。直接使用OpenCV、Pytorch等深度学习库部署到无人机平台存在很多问题,如无人机相关软硬件接口(吊舱、数据链、地面站、多机机间通讯) 难以统一,相关探测感知算法在性能与效率方面难以适应边缘机载计算机,导致无人机OODA中的感知与认知成为多数应用的瓶颈。原创 2023-10-08 16:14:59 · 215 阅读 · 0 评论 -
不想敲代码,如何快速实现数据标注、模型训练、高效部署?
SpireView自动化标注工具可以减少人工标注的成本和时间,从而降低整个深度学习项目的成本。让更多的企业和组织参与深度学习项目,促进深度学习技术的发展和应用。原创 2023-10-27 14:20:56 · 866 阅读 · 0 评论