【项目实训1】手把手教你使用 Dehazeformer 模型去雾:服务器租用、环境配置、自定义数据集、模型的训练与测试(全网最全的操作指导)

前言

文章性质:实操笔记 📖

代码来源:GitHub - IDKiro/DehazeFormer: [IEEE TIP] Vision Transformers for Single Image Dehazing

主要内容:本文详细记录了如何借助 Tabby 图形界面工具在 AutoDL 远程服务器上配置 Dehazeformer 所需的项目环境,并且成功运行 Dehazeformer 模型进行训练和测试,进而实现对自定义数据集的去雾处理。

冷知识+1:小伙伴们不经意的 点赞 👍🏻 与 收藏 ✨ 可以让作者更有创作动力! 

目录

前言

Prepare

1、AutoDL 租用远程服务器

2、Tabby 设置 SSH 接口

(1)获取 SSH 登录

(2)配置 SSH 连接

(3)运行 SSH 连接

3、Tabby 上传项目代码

4、Tabby 配置项目环境

(1)新建 conda 环境

(2)激活 conda 环境

(3)配置 conda 环境 ①

(4)配置 conda 环境 ②

Download

Training ✨

Testing ✨


Prepare

在运行 Dehazeformer 代码前,我们要先在 AutoDL 平台租用合适的远程服务器,并借助 Tabby 图形化界面上传代码和配置环境。

借助 Tabby 图形界面在 Autodl 远程服务器上,根据 Github 官网中提供的 DehazeFormer 流程进行配置:

代码链接:GitHub - IDKiro/DehazeFormer: [IEEE TIP] Vision Transformers for Single Image Dehazing

1、AutoDL 租用远程服务器

在 AutoDL 官网的【算力市场】按照自身需求租用合适的 GPU :

【说明】由于 Github 项目中提到 Dehazeformer 运行环境为 PyTorch 1.10.2 + CUDA 11.3 + cuDNN 8.2.0 ,故按图设置镜像。

2、Tabby 设置 SSH 接口

(1)获取 SSH 登录

在 Tabby 设置 SSH 接口前,需要确保租用的 GPU 处于运行状态,还要获取 SSH 登录所需的指令与密码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

作者正在煮茶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值