前言
文章性质:实操笔记 📖
代码来源:GitHub - IDKiro/DehazeFormer: [IEEE TIP] Vision Transformers for Single Image Dehazing
主要内容:本文详细记录了如何借助 Tabby 图形界面工具在 AutoDL 远程服务器上配置 Dehazeformer 所需的项目环境,并且成功运行 Dehazeformer 模型进行训练和测试,进而实现对自定义数据集的去雾处理。
冷知识+1:小伙伴们不经意的 点赞 👍🏻 与 收藏 ✨ 可以让作者更有创作动力!
目录
Prepare
在运行 Dehazeformer 代码前,我们要先在 AutoDL 平台租用合适的远程服务器,并借助 Tabby 图形化界面上传代码和配置环境。
- AutoDL 官网:AutoDL 算力云 | 弹性、好用、省钱。
- Tabby 工具:Tabby - a terminal for a more modern age
借助 Tabby 图形界面在 Autodl 远程服务器上,根据 Github 官网中提供的 DehazeFormer 流程进行配置:
代码链接:GitHub - IDKiro/DehazeFormer: [IEEE TIP] Vision Transformers for Single Image Dehazing
1、AutoDL 租用远程服务器
在 AutoDL 官网的【算力市场】按照自身需求租用合适的 GPU :
【说明】由于 Github 项目中提到 Dehazeformer 运行环境为 PyTorch 1.10.2 + CUDA 11.3 + cuDNN 8.2.0 ,故按图设置镜像。
2、Tabby 设置 SSH 接口
(1)获取 SSH 登录
在 Tabby 设置 SSH 接口前,需要确保租用的 GPU 处于运行状态,还要获取 SSH 登录所需的指令与密码。