[贝叶斯八]之极大似然估计

本文简要介绍了极大似然估计的概念,它是一种通过观察数据来估计模型参数的方法。通过举例抛硬币实验说明其应用场景,并进行理论推导,指出在最大化似然函数时求得的参数估计。文章还提及将采用对数似然函数简化计算,并给出了相关例题及参考资料。
摘要由CSDN通过智能技术生成

一、简单介绍

极大似然估计是根据观察数据来估计模型参数的方法,即“模型已定,模型未知”。它是参数估计的一种方法,请参考《概率论与数理统计(浙大第四版)》中参数估计。

举个例子,大家都知道抛硬币的实验: 假设有一枚不规则的硬币,要计算它正面朝上的概率。其实就是估计一个二分布的参数。现在我们开始做实验,抛了10次,得到相应的结果。那么如何根据这些结果来估计我们的参数呢?这就是极大似然估计要处理的一个场景。

二、理论推导

我们假设 [x1,x2,x3,x4,.......,xn] [ x 1 , x 2 , x 3 , x 4 , . . . . . . . , x n ] 是独立同分布的采样, θ θ 是模型参数。因为采样是独立的,所以该采样出现的概率可以用如下连乘表示。

L(θ)=L(x1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值