一、简单介绍
极大似然估计是根据观察数据来估计模型参数的方法,即“模型已定,模型未知”。它是参数估计的一种方法,请参考《概率论与数理统计(浙大第四版)》中参数估计。
举个例子,大家都知道抛硬币的实验: 假设有一枚不规则的硬币,要计算它正面朝上的概率。其实就是估计一个二分布的参数。现在我们开始做实验,抛了10次,得到相应的结果。那么如何根据这些结果来估计我们的参数呢?这就是极大似然估计要处理的一个场景。
二、理论推导
我们假设 [x1,x2,x3,x4,.......,xn] [ x 1 , x 2 , x 3 , x 4 , . . . . . . . , x n ] 是独立同分布的采样, θ θ 是模型参数。因为采样是独立的,所以该采样出现的概率可以用如下连乘表示。
这一概率随着 θ θ 取值而变化,它是 θ θ 的函数, L(θ) L ( θ ) 称为样本的似然函数(注意,这里 [x1,x2,x3,x4……xn] [ x 1 , x 2 , x 3 , x 4 … … x n ] 是已知的样本值,他们都是常数)。显然,这个事件已经发生了,那么按照人类的常理来说,我们认为概率越大的事件越可能发生,也就是我们可以认为 θ θ 参数肯定是在 L(θ) L ( θ ) 最大的时候取得的。由此,我们的问题变成了如何来最大化 L(θ) L ( θ ) 。这也就是极大似然估计的想法。
对于计算来说连乘不太好算,所以一般取对数。
最终我们要求的 θ^ θ ^ 可以写成如下式子。
三、例题
例题均来自于概率论浙大第4版(在此再次表示感谢~)。
例题1:
例题2:
四、参考文献
[1] 《概率论与数理统计(浙大第4版)》
[2] 周志华. 《机器学习》[M]. 清华大学出版社, 2016.
[3] http://jermmy.xyz/2017/09/30/2017-9-30-maximum-likelihood-estimation/
<个人网页blog已经上线,一大波干货即将来袭:https://faiculty.com/>
/* 版权声明:公开学习资源,只供线上学习,不可转载,如需转载请联系本人 .*/