一、简单介绍
极大似然估计是根据观察数据来估计模型参数的方法,即“模型已定,模型未知”。它是参数估计的一种方法,请参考《概率论与数理统计(浙大第四版)》中参数估计。
举个例子,大家都知道抛硬币的实验: 假设有一枚不规则的硬币,要计算它正面朝上的概率。其实就是估计一个二分布的参数。现在我们开始做实验,抛了10次,得到相应的结果。那么如何根据这些结果来估计我们的参数呢?这就是极大似然估计要处理的一个场景。
二、理论推导
我们假设 [x1,x2,x3,x4,.......,xn] [ x 1 , x 2 , x 3 , x 4 , . . . . . . . , x n ] 是独立同分布的采样, θ θ 是模型参数。因为采样是独立的,所以该采样出现的概率可以用如下连乘表示。
L(θ)=L(x1