评估每种大模型需要多少GPU显存方法与技巧

在这里插入图片描述

若您对大模型的名称后缀比如7b/-instruct…还不太明确,推荐您先阅读LLM模型名称解读

大模型显存需求计算

这里推荐一个在线的"大模型显存计算器",可以准确计算选用的模型在不同使用场景下的显存需求。
在这里插入图片描述

对于一个大模型来说,显存需求主要分为三种情况:

  1. 推理(Inference)时的显存需求:模型用于生成回答时需要的显存
  2. 全参数微调(Fine-tuning)时的显存需求:对模型所有参数进行调整时需要的显存,很少用一般不关注
  3. 部分参数微调(LORA等)时的显存需求:只更新部分参数时需要的显存

以DeepSeek 7B模型(70亿参数)为例如下图,在FP16精度(每个参数占用16位或2个字节)下:

  • 推理时需要约14.5GB显存
  • 全参数微调时需要约48GB显存
  • 部分参数微调时需要约15GB显存
    综上我们如果选用deepseek7b大约需要14~15G显存。

📋另外有个小技巧,内存需求经验法则:拥有X B参数的模型通常需要约2X GB的显存。比如这里的7B一般就是占用7*2G显存。
这些相对于原来模型小的模型不是从零开始训练的,而是通过对更大模型进行优化和降维得到的。这些模型是通过知识蒸馏、量化等技术从更大的预训练模型中"压缩"得到的。
在这里插入图片描述

大模型显存需求计算方法

对于大模型的显存需求,我们可以用一个简单的经验法则来估算:拥有X B参数的模型在FP16(半精度)格式下通常需要约2X GB的显存进行推理。例如:

  • 0.5B参数模型在FP16下需要约1GB显存
  • 7B参数模型在FP16下需要约14GB显存
  • 70B参数模型在FP16下需要约140GB显存

当然,这只是基本的参数存储需求,实际运行时还需要考虑额外的缓存、激活值和其他临时变量的存储空间。这就是为什么即使是7B模型,在推理时实际也常常需要15GB以上的显存。

利用量化技术(如4-bit量化),可以进一步降低显存需求,使更大的模型能够在普通硬件上运行。例如,一个7B模型经过4-bit量化后,理论上只需要约4GB的显存就能进行推理。

这种通过蒸馏和量化得到的小型模型,虽然与原始大模型相比有一定的性能损失,但在许多场景下仍然能够提供令人满意的结果,同时大大降低了硬件要求,使AI技术更加平民化,这也是目前大模型发展的一个重要方向。

如何选择合适的模型规模

根据你的硬件条件选择合适的模型规模是非常重要的。一般推荐选择占用机器显存的2/3内。例如:

  • 如果你使用的是RTX 4090显卡(24GB显存),可以轻松部署7B级别的模型进行推理或部分参数微调
  • 如果你拥有两张RTX 4090(总共48GB显存),甚至可以进行7B模型的全参数微调

对于更大规模的模型,如DeepSeek 67B模型,推理时需要约148GB的显存。如果是满血版的DeepSeek 671B,显存需求将是前者的十倍,高达1480GB!这就需要多张高端GPU,比如10-15张NVIDIA H200(每张96GB显存)才能满足需求。

### 大模型微调所需显存的估算 大模型微调所需的 GPU 显存主要由以下几个因素决定:模型大小、微调方法以及优化策略。对于较大的模型,全量微调通常需要较高的显存支持,而高效的微调方法可以显著降低这一需求。 #### 1. **全量微调** 当进行全量微调时,模型的所有参数都会被更新,因此需要足够的显存来存储模型权重、梯度和优化器状态。例如,一个具有数十亿参数的大模型可能需要几十 GB 的显存才能完成训练[^1]。然而,在资源有限的情况下,这种方法并不现实。 #### 2. **高效微调方法** 为了适应低资源配置环境,研究者开发了一些高效的微调方法,这些方法能够大幅减少显存消耗: - **LoRA (Low-Rank Adaptation)** LoRA 方法通过引入低秩矩阵分解的方式调整模型的关键部分,而不是直接修改原始权重。这种方式只需要额外存储少量新增加的小规模参数,从而极大地降低了显存需求。即使是在较小的显卡上(如拥有 4GB 显存的 GTX 960),也可以尝试使用此技术实现简单的微调操作[^1]。 - **QLoRA** 结合量化技术和 LoRA 的优势,QLoRA 能够进一步压缩模型尺寸并减少显存占用。尽管如此,具体表现仍依赖于目标应用领域的要求及其对精度损失容忍程度如何评估[^1]。 #### 3. **量化精度控制** 除了改变微调方式外,还可以通过对模型进行量化处理来减小其体积进而节约更多空间。比如从 FP16 或 BF16 进一步降到 INT8 精度水平,则理论上可以使每张卡片上的可用有效工作区域扩大近两倍左右。不过需要注意的是,这样做可能会带来一定程度的质量折损[^2]。 #### 4. **分布式训练方案** 针对极端受限条件下的场景,还有多种分布式的解决方案可供选择: - **数据并行(Data Parallelism):** 将批量样本拆分成若干份分别交给不同节点独立计算后再汇总结果;但是这种做法无法缓解单机内部件间竞争激烈所带来的压力——即每个单独使用的装置依旧面临相同的高峰时期内存瓶颈问题[^3]。 - **零冗余优化(Zero Redundancy Optimizer, ZeRO Stage 3):** 它不仅实现了跨设备共享参数副本的功能而且还允许动态加载那些当前迭代过程中需要用到的部分而非一次性全部载入内存之中,最终达到既缩短整体耗时时长又能充分利用现有硬件设施的目的. - **张量切片(Tensor Sharding/Slicing):** 把原本属于同一个张量对象的内容按照一定规则分开存放至各个处理器单元里头去执行相应的运算任务,这样做的好处是可以让每一个参协作过程中的成员只负责维护属于自己那一份额度范围内的变量集合即可[^3]. - **管道级联(Pipeline Parallelism):** 此种模式把神经网络结构纵向切割成数段之后再分配给不同的计算实体各自承担其中一段职责所在的工作流程环节,虽然说这样的安排有助于减轻局部负载过重的现象发生几率可是同时也伴随着更多的消息传递成本开支增加的风险存在[^3]. 综上所述,即便面对像只有 4GB 显存容量这么局限性的条件下也并非完全没有希望达成某些特定类型的预训练语言模型定制化改造作业的目标可能性。只是在实际操作之前务必要充分考虑到各种潜在影响因子之间的相互作用关系以便做出更加合理科学的选择决策而已。 ```python import torch from transformers import LlamaForCausalLM, BitsAndBytesConfig # 使用 Quantization 减少显存占用 bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b", quantization_config=bnb_config) ``` 以上代码片段展示了如何利用 `BitsAndBytes` 库来进行四比特量化以适配较低规格的 GPU 设备。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非常大模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值