论文地址:https://openaccess.thecvf.com/content/CVPR2025/papers/Yang_OODD_Test-time_Out-of-Distribution_Detection_with_Dynamic_Dictionary_CVPR_2025_paper.pdf
1. 引言
在深度学习模型中,分布外(Out-of-Distribution, OOD)检测是一个关键挑战,因为模型容易对未知数据做出高置信度的错误预测。传统方法通常依赖训练时的 outlier exposure 或测试时的复杂校准,但往往面临计算成本高、稳定性差的问题。本文介绍的 OODD(Test-time Out-of-Distribution Detection with Dynamic Dictionary)是一种新颖的测试时 OOD 检测方法,它通过动态维护一个 OOD 字典来实现高效、稳定

订阅专栏 解锁全文
3060

被折叠的 条评论
为什么被折叠?



