[2025CVPR 异常检测方向]OODD:基于动态字典的测试时分布外检测方法详解

论文地址:https://openaccess.thecvf.com/content/CVPR2025/papers/Yang_OODD_Test-time_Out-of-Distribution_Detection_with_Dynamic_Dictionary_CVPR_2025_paper.pdf

1. 引言

在深度学习模型中,分布外(Out-of-Distribution, OOD)检测是一个关键挑战,因为模型容易对未知数据做出高置信度的错误预测。传统方法通常依赖训练时的 outlier exposure 或测试时的复杂校准,但往往面临计算成本高、稳定性差的问题。本文介绍的 ​OODD​(Test-time Out-of-Distribution Detection with Dynamic Dictionary)是一种新颖的测试时 OOD 检测方法,它通过动态维护一个 OOD 字典来实现高效、稳定

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值