【学习SLAM】TUM数据集

本文详细介绍了TUM RGB-D数据集的下载、解压及数据格式,包括彩色图像、深度图像和标准轨迹的采集方式。阐述了如何使用Python脚本进行时间对齐,实现彩色图和深度图的配对,以及测评工具的下载和配置过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在 TUM数据集主页找到它的下载链接。https://vision.in.tum.de/data/datasets/rgbd-dataset/download

我们的数据位于本章目录的 data/下,以压缩包形式提供(data.tar.gz)。由于 TUM数据集是从实际环境中采集的,需要解释一下它的数据格式(数据集一般都有自己定义的格式)。在解压后,你将看到以下这些文件:
1. rgb.txt 和 depth.txt 记录了各文件的采集时间和对应的文件名。
2. rgb/ 和 depth/目录存放着采集到的 png 格式图像文件。彩色图像为八位三通道,深
度图为 16 位单通道图像。文件名即采集时间。
3. groundtruth.txt 为外部运动捕捉系统采集到的相机位姿,格式为
(time, t x , t y , t z , q x , q y , q z , q w ),

我们可以把它看成标准轨迹。
请注意彩色图、深度图和标准轨迹的采集都是独立的,轨迹的采集频率比图像高很多。在使用数据之前,需要根据采集时间,对数据进行一次时间上的对齐,以便对彩色图和深度图进行配对。原则上,我们可以把采集时间相近于一个阈值的数据,看成是一对图像。并把相近时间的位姿,看作是该图像的真实采集位置。TUM 提供了一个 python 脚本“associate.py”(或使用 slambook/tools/associate.py)帮我们完成这件事。请把此文件放到数据集目录下,运行:
 

python associate.py rgb.txt depth.txt > associate.txt
### 下载并使用TUM数据集进行SLAM项目 #### 获取TUM RGB-D 数据集 为了开展基于TUM格式的数据处理工作,需先访问官方提供的RGB-D SLAM Benchmark网站获取所需资源[^1]。该站点提供了多种场景下录制的不同序列供研究人员选用。 #### 准备开发环境 对于希望利用这些数据来进行视觉里程计(Visual Odometry, VO)实验的研究者来说,在本地计算机上建立合适的编译配置至关重要。通过创建`CMakeLists.txt`文件定义项目结构以及依赖库连接情况能够有效促进代码模块化管理与跨平台移植性提升[^2]: ```cmake add_library(myslam SHARED frame.cpp mappoint.cpp map.cpp camera.cpp config.cpp visual_odometry.cpp ) target_link_libraries( myslam ${THIRD_PARTY_LIBS} ) ``` #### 运行测试案例 当完成上述准备工作之后,则可以在指定目录内编写具体的应用逻辑以读取来自TUM数据源的信息流作为输入给定至自定义实现之中;与此同时,借助第三方开源软件包如OpenCV等辅助功能组件加速原型迭代过程。 #### 结果验证与性能分析 最后一步涉及采用专门设计用来衡量估计精度的专业工具——例如EVO——来对比不同方法间优劣差异之处。命令行界面允许用户轻松调用内置函数计算误差统计量,并可视化呈现路径偏差状况图表以便直观理解整体表现特征[^3]: ```bash evo_traj tum CameraTrajectory.txt KeyFrameTrajectory.txt \ -p --plot_mode=xyz trajectories xyz_view rpy_view ``` 此流程涵盖了从理论概念到实践应用各个环节的关键要素介绍,旨在帮助初学者快速入门并掌握基本技能要点。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值