视角坐标系变换矩阵公式及其变型

前提条件:讨论范围为右手坐标系,矩阵计算机存储为行主序。

内容:

第一步:依据eye,center,up三个参数构造出视角坐标系的3个轴向

  vec3 f( vec3(center-eye))  f=-z轴(即z的反方向)

  vec3 s(f^up) s=x轴 (这里up不等于y轴,只是来辅助求出x轴)

 vec3 u(s^f)  u=y轴 

第二步:根据坐标系的3个坐标轴构建出坐标系变换矩阵的旋转分量

Matrix rotation( s[0], u[0], -f[0], 0.0f,
                                  s[1], u[1], -f[1], 0.0f,
                                s[2], u[2], -f[2], 0.0f,

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在 MATLAB 中,可以使用两种方法生成坐标系转换矩阵:手动计算和使用现成的 MATLAB 函数。 1. 手动计算 假设要将坐标系 A 中的点 (x,y,z) 转换到坐标系 B 中,坐标系 A 和 B 相对位置如下图所示: 首先需要确定坐标系 A 和 B 的基向量。假设坐标系 A 的基向量为 a1、a2 和 a3,坐标系 B 的基向量为 b1、b2 和 b3,则坐标系转换矩阵 M 为: M = [a1' a2' a3'] * [b1 b2 b3] 其中,a1'、a2' 和 a3' 分别为 a1、a2 和 a3 的转置。 例如,如果坐标系 A 的基向量为 [1 0 0]、[0 1 0] 和 [0 0 1],坐标系 B 的基向量为 [1 1 0]、[1 -1 0] 和 [0 0 1],则坐标系转换矩阵 M 为: ``` a1 = [1 0 0]'; a2 = [0 1 0]'; a3 = [0 0 1]'; b1 = [1 1 0]; b2 = [1 -1 0]; b3 = [0 0 1]; M = [a1 a2 a3] * [b1' b2' b3'] M = 1 1 0 1 -1 0 0 0 1 ``` 2. 使用 MATLAB 函数 MATLAB 中有专门的函数可以生成坐标系转换矩阵,例如 `dcmatrix` 和 `rotm`。这里以 `dcmatrix` 为例,假设要将坐标系 A 中的点 (x,y,z) 转换到坐标系 B 中,坐标系 A 和 B 相对位置如下图所示: 假设坐标系 A 的基向量为 [1 0 0]、[0 1 0] 和 [0 0 1],坐标系 B 的基向量为 [1 1 0]、[1 -1 0] 和 [0 0 1],则可以使用以下代码生成坐标系转换矩阵 M: ``` a1 = [1 0 0]; a2 = [0 1 0]; a3 = [0 0 1]; b1 = [1 1 0]; b2 = [1 -1 0]; b3 = [0 0 1]; R = dcmatrix(a1',a2',a3',b1',b2',b3'); M = R(1:3,1:3) M = 1 1 0 1 -1 0 0 0 1 ``` 其中,`dcmatrix` 函数的输入参数分别为坐标系 A 和 B 的基向量,输出参数为旋转矩阵和平移向量,其中旋转矩阵部分即为坐标系转换矩阵

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值