车载组合导航NHC非完整性约束

1.NHC的概念

2.NHC方程推导

以上图为例,上图的字母为向量形式:

                                                             r+l=R

\frac{dr}{dt}|n+\frac{dl}{dt}|n=\frac{dR}{dt}|n

按照哥式定理:

                                                           V_{imu}^{n}+\frac{dl}{dt}|b+\varpi _{nb}^{n}\times l=V_{odo}^{n}

V_{imu}^{n}+C_{b}^{n}*\varpi _{nb}^{b}\times l=V_{odo}^{n}

由N系转换到V(安装坐标系)后可得:

3.NHC与INS组合的观测方程设计

对上式做扰动分析:

则量测方程可得:

在实际的滤波中可以忽略掉可以安装角误差,因为安装角的误差并不是状态估计参数

### NHC/INS 组合导航 C++ 实现代码示例 以下是基于已知信息构建的一个简单的 NHC (Non-Holonomic Constraint, 完整性约束)/INS 组合导航系统的伪代码实现。此代码仅作为概念验证,实际应用可能需要更复杂的误差建模和状态估。 #### 初始化部分 初始化变量并设置时间戳以便后续算。 ```cpp #include <iostream> #include <ctime> int main() { // 创建 t1、t2、t3 用于时 clock_t t1, t2, t3; t1 = clock(); std::cout << "Starting Non-Holonomic Constraint / INS Integration..." << std::endl; double initial_position_x = 0.0; // 初始位置 X 坐标 double initial_position_y = 0.0; // 初始位置 Y 坐标 double heading_angle = 0.0; // 航向角(初始为零) const double dt = 0.1; // 时间步长(秒) } ``` #### 动态更新模型 通过 IMU 数据更新车辆的位置和航向角度。 ```cpp // 更新函数:假设输入为线度 v 和角度 w void updateState(double& position_x, double& position_y, double& angle, double linear_velocity, double angular_velocity, double delta_time) { // 使用完整性约束条件下的运动学方程 position_x += linear_velocity * cos(angle) * delta_time; position_y += linear_velocity * sin(angle) * delta_time; angle += angular_velocity * delta_time; // 归一化角度到 [-π, π] while (angle > M_PI) angle -= 2 * M_PI; while (angle < -M_PI) angle += 2 * M_PI; } double simulated_linear_velocity = 1.0; // 模拟线度 (m/s) double simulated_angular_velocity = 0.1; // 模拟角度 (rad/s) updateState(initial_position_x, initial_position_y, heading_angle, simulated_linear_velocity, simulated_angular_velocity, dt); std::cout << "Updated Position: (" << initial_position_x << ", " << initial_position_y << "), Heading Angle: " << heading_angle << std::endl; ``` #### 添加完整性约束校正项 引入完整性约束来减少累积误差。 ```cpp // 应用完整性约束修正 void applyNHCConstraint(double& velocity_x, double& velocity_y, double heading_angle) { // 算理论上的横向度分量 double theoretical_lateral_velocity = velocity_x * sin(heading_angle) - velocity_y * cos(heading_angle); // 如果存在显著偏差,则调整度矢量使其满足完整性约束 if (fabs(theoretical_lateral_velocity) > 1e-6) { velocity_x *= cos(heading_angle); velocity_y *= sin(heading_angle); } } applyNHCConstraint(simulated_linear_velocity * cos(heading_angle), simulated_linear_velocity * sin(heading_angle), heading_angle); std::cout << "After applying NHC constraint." << std::endl; ``` #### 总结与结束 记录程序运行时间和最终结果。 ```cpp t2 = clock(); std::cout << "Computation Time: " << ((float)(t2 - t1)) / CLOCKS_PER_SEC << " seconds" << std::endl; return 0; ``` --- 上述代码展示了如何利用完整性约束改进 INS 的定位精度[^1]。此外,可以参考 `ignav` 开源项目中的 GNSS/INS 紧组合算法实现更多功能[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值