原理:
非完整性约束NHC是指在车辆行驶过程中假定车辆不出现侧滑、漂移、弹跳等,车辆的侧向和垂向速度为0,构造虚拟观测量,进行运动约束的过程。其效果与虚拟观测量方差的设置息息相关。
我们假定车辆(载体)坐标系和IMU坐标系重合,载体的前向、侧向、垂向速度可表示为:
对上式进行全微分,可得:
但是另外一些论文中,观测矩阵不同,如下
这一块我就没看懂了。
研究内容:
现有的研究主要是在方差域调整NHC观测噪声改变其约束的松紧程度,其本质是通过方差膨胀使得以零为中心的协方差椭球能够包住真实的侧向/垂向速度,但在一定程度上损失了约束信息。在实际车辆导航中,车辆运动状态(直行或转弯)、车身振动、惯导安装位置以及安置角度等影响因素,使得车辆侧向和垂向速度为零的这一假设条件无法满足,导致 NHC 虚拟观测值存在误差,从而影响惯性误差推算的抑制效果。
《非完整约束的 OD/SINS自适应组合导航方法》中针对这一问题构建了一种基于车辆运动状态的NHC噪声自适应方法。文中发现NHC横向速度噪声 受车辆前向速度和车辆转弯的共同影响,其中车辆前向速度 可由车辆CAN总线获取(里程计),车辆转弯可参考文献《利用 MEMS-IMU 检测车辆运动状态的 自适应方法》,文中车辆转弯的判定条件为:
;文中,也针对车辆变道和小角度弧段等,针对不同车速设置不同阈值,详细可看论文。
《非完整约束的 OD/SINS自适应组合导航方法》中提出当车辆存在转弯运动时,根据车辆行驶速度和转弯角度的大小,动态调整NHC噪声项 :
为设定的自适应比例因子。为减少过松或过紧的噪声约束导致滤波结果异常,在进行滤波更新时,首先根据上式计算噪声项 ,再进行自适应调整
《参数自主学习的车辆运动约束新模型及其惯性推算误差抑制分析》针对NHC观测噪声不适应的问题基于参数自主学习来构建参数运动约束模型,其基本思路是当GNSS观测条件良好时,训练车辆侧向/垂向速度与影响因子(车辆前向速度、转弯角速度)之间的映射关系;当GNSS不可用时,通过学习得到的映射模型推断车辆侧向/垂向速度,形成NHC约束信息。
参数学习主要采用了两种方法:多元回归方法和深度学习方法。
多元回归方法考虑了侧向速度,文中给出了两类回归模型:
深度学习方法使用历史数据作为训练集,当GNSS可用时,由GNSS/SINS 融合解算可以得到侧向/垂向速度真值,同时与相应的惯导六轴输出打包形成标签数据。构造的损失函数即为训练输出的侧向/垂向速度与真值之间差值向量的二范数。在训练过程中,若反向传播后的相关计算值小于阈值,则对神经网络进行参数更新,否则就直接开始下一次训练,直到训练次数达到设定值。
实验结果:相比于方差域调参的传统方法,采用多元回归模型的惯性推算误差RMS在水平位置上减小了69.6%~81.2%,而利用深度学习则减小了 60.0%~77.3%。同时,水平相对定位精度分别提升了75.2%和65.0%,能有效提高GNSS失效时车载定位精度维持能力。